1,266 research outputs found
Cohesion, team mental models, and collective efficacy: Towards an integrated framework of team dynamics in sport
A nomological network on team dynamics in sports consisting of a multi-framework perspective is introduced and tested. The aim was to explore the interrelationship among cohesion, team mental models (TMM), collective-efficacy (CE), and perceived performance potential (PPP). Three hundred and forty college-aged soccer players representing 17 different teams (8 female and 9 male) participated in the study. They responded to surveys on team cohesion, TMM, CE and PPP. Results are congruent with the theoretical conceptualization of a parsimonious view of team dynamics in sports. Specifically, cohesion was found to be an exogenous variable predicting both TMM and CE beliefs. TMM and CE were correlated and predicted PPP, which in turn accounted for 59% of the variance of objective performance scores as measured by teams’ season record. From a theoretical standpoint, findings resulted in a parsimonious view of team dynamics, which may represent an initial step towards clarifying the epistemological roots and nomological network of various team-level properties. From an applied standpoint, results suggest that team expertise starts with the establishment of team cohesion. Following the establishment of cohesiveness, teammates are able to advance team-related schemas and a collective sense of confidence. Limitations and key directions for future research are outlined
Blind Normalization of Speech From Different Channels
We show how to construct a channel-independent representation of speech that
has propagated through a noisy reverberant channel. This is done by blindly
rescaling the cepstral time series by a non-linear function, with the form of
this scale function being determined by previously encountered cepstra from
that channel. The rescaled form of the time series is an invariant property of
it in the following sense: it is unaffected if the time series is transformed
by any time-independent invertible distortion. Because a linear channel with
stationary noise and impulse response transforms cepstra in this way, the new
technique can be used to remove the channel dependence of a cepstral time
series. In experiments, the method achieved greater channel-independence than
cepstral mean normalization, and it was comparable to the combination of
cepstral mean normalization and spectral subtraction, despite the fact that no
measurements of channel noise or reverberations were required (unlike spectral
subtraction).Comment: 25 pages, 7 figure
Beam Based Alignment of Interaction Region Magnets
In conventional beam based alignment (BBA) procedures, the relative alignment
of a quadrupole to a nearby beam position monitor is determined by finding a
beam position in the quadrupole at which the closed orbit does not change when
the quadrupole field is varied. The final focus magnets of the interaction
regions (IR) of circular colliders often have some specialized properties that
make it difficult to perform conventional beam based alignment procedures. At
the HERA interaction points, for example, these properties are: (a) The
quadrupoles are quite strong and long. Therefore a thin lens approximation is
quite imprecise. (b) The effects of angular magnet offsets become significant.
(c) The possibilities to steer the beam are limited as long as the alignment is
not within specifications. (d) The beam orbit has design offsets and design
angles with respect to the axis of the low-beta quadrupoles. (e) Often
quadrupoles do not have a beam position monitor in their vicinity. Here we
present a beam based alignment procedure that determines the relative offset of
the closed orbit from a quadrupole center without requiring large orbit changes
or monitors next to the quadrupole. Taking into account the alignment angle
allows us to reduce the sensitivity to optical errors by one to two orders of
magnitude. We also show how the BBA measurements of all IR quadrupoles can be
used to determine the global position of the magnets. The sensitivity to errors
of this method is evaluated and its applicability to HERA is shown
Social Effects in Science: Modelling Agents for a Better Scientific Practice
Science is a fundamental human activity and we trust its results because it
has several error-correcting mechanisms. Its is subject to experimental tests
that are replicated by independent parts. Given the huge amount of information
available, scientists have to rely on the reports of others. This makes it
possible for social effects to influence the scientific community. Here, an
Opinion Dynamics agent model is proposed to describe this situation. The
influence of Nature through experiments is described as an external field that
acts on the experimental agents. We will see that the retirement of old
scientists can be fundamental in the acceptance of a new theory. We will also
investigate the interplay between social influence and observations. This will
allow us to gain insight in the problem of when social effects can have
negligible effects in the conclusions of a scientific community and when we
should worry about them.Comment: 14 pages, 5 figure
The Next Linear Collider machine protection system
The Next Linear Collider (NLC) electron and positron beams are capable of damaging the linac accelerating structure and beamline vacuum chambers during an individual aberrant accelerator pulse. Machine protection system (MPS) considerations, outlined in this paper, have an impact on the engineering and design of most machine components downstream of the damping ring injector complex. The MPS consists of two functional levels. The first is a system that provides a benign, single bunch, low intensity, high emittance beam that will be used for commissioning and at any time that the integrity or the settings of the downstream component are in doubt. This level also provides for the smooth transition back and forth between high power operation and the benign diagnostic pilot bunch operation. The pilot bunch parameters in the main linac are estimated on the basis of the expected stress in the accelerator structure copper. Beam tests have been done at the SLAC linac to examine the behaviour of the copper at the damage stress threshold. Typical pilot beam parameters (compared with nominal) are: 10 times reduced intensity, 10 times increased horizontal emittance and 1000 times increased vertical emittance, resulting in a reduction in charge density of 105. The second level is the primary protection against a single aberrant pulse. It’s goal is to reduce the possibility that a substantial transverse field changes the trajectory of the high power beam from one pulse to the next. All devices that could produce such a field are 1) monitored by a fast response network and 2) have deliberately slowed response times. A ‘maximum allowable interpulse difference ’ is evaluated for each such device as well as the beam trajectory monitors in each interpulse period.
Kepler Presearch Data Conditioning I - Architecture and Algorithms for Error Correction in Kepler Light Curves
Kepler provides light curves of 156,000 stars with unprecedented precision.
However, the raw data as they come from the spacecraft contain significant
systematic and stochastic errors. These errors, which include discontinuities,
systematic trends, and outliers, obscure the astrophysical signals in the light
curves. To correct these errors is the task of the Presearch Data Conditioning
(PDC) module of the Kepler data analysis pipeline. The original version of PDC
in Kepler did not meet the extremely high performance requirements for the
detection of miniscule planet transits or highly accurate analysis of stellar
activity and rotation. One particular deficiency was that astrophysical
features were often removed as a side-effect to removal of errors. In this
paper we introduce the completely new and significantly improved version of PDC
which was implemented in Kepler SOC 8.0. This new PDC version, which utilizes a
Bayesian approach for removal of systematics, reliably corrects errors in the
light curves while at the same time preserving planet transits and other
astrophysically interesting signals. We describe the architecture and the
algorithms of this new PDC module, show typical errors encountered in Kepler
data, and illustrate the corrections using real light curve examples.Comment: Submitted to PASP. Also see companion paper "Kepler Presearch Data
Conditioning II - A Bayesian Approach to Systematic Error Correction" by Jeff
C. Smith et a
- …