3,297 research outputs found

    Extending the DEVS Formalism with Initialization Information

    Full text link
    DEVS is a popular formalism to model system behaviour using a discrete-event abstraction. The main advantages of DEVS are its rigourous and precise specification, as well as its support for modular, hierarchical construction of models. DEVS frequently serves as a simulation "assembly language" to which models in other formalisms are translated, either giving meaning to new (domain-specific) languages, or reproducing semantics of existing languages. Despite this rigourous definition of its syntax and semantics, initialization of DEVS models is left unspecified in both the Classic and Parallel DEVS formalism definition. In this paper, we extend the DEVS formalism by including an initial total state. Extensions to syntax as well as denotational (closure under coupling) and operational semantics (abstract simulator) are presented. The extension is applicable to both main variants of the DEVS formalism. Our extension is such that it adds to, but does not alter the original specification. All changes are illustrated by means of a traffic light example

    Monitoring Galvanic Replacement Through Three-Dimensional Morphological and Chemical Mapping

    Full text link
    Galvanic replacement reactions on metal nanoparticles are often used for the preparation of hollow nanostructures with tunable porosity and chemical composition, leading to tailored optical and catalytic properties. However, the precise interplay between the three-dimensional (3D) morphology and chemical composition of nanostructures during Galvanic replacement is not always well understood as the 3D chemical imaging of nanoscale materials is still challenging. It is especially far from straightforward to obtain detailed information from the inside of hollow nanostructures using electron microscopy techniques such as SEM or TEM. We demonstrate here that a combination of state-of-the-art EDX mapping with electron tomography results in the unambiguous determination of both morphology transformation and elemental composition of nanostructures in 3D, during Galvanic replacement of Ag nanocubes. This work provides direct and unambiguous experimental evidence leading to new insights in the understanding of the galvanic replacement reaction. In addition, the powerful approach presented here can be applied to a wide range of nanoscale transformation processes, which will undoubtedly guide the development of novel nanostructures

    Transmission Electron Microscopy on Interface Engineered Superconducting Thin Films

    Get PDF
    Transmission electron microscopy is used to evaluate different deposition techniques, which optimize the microstructure and physical properties of superconducting thin films. High-resolution electron microscopy proves that the use of an YBa2Cu2O buffer layer can avoid a variable interface configuration in YBa2Cu3O7 thin films grown on SrTiO3. The growth can also be controlled at an atomic level by using sub-unit cell layer epitaxy, which results in films with high quality and few structural defects. Epitaxial strain in Sr0 85La0 15CuO2 infinite layer thin films influences the critical temperature of these films, as well as the microstructure. Compressive stress is released by a modulated or a twinned microstructure, which eliminates superconductivity. On the other hand, also tensile strain seems to lower the critical temperature of the infinite layer

    Atomic resolution mapping of phonon excitations in STEM-EELS experiments

    Full text link
    Atomically resolved electron energy-loss spectroscopy experiments are commonplace in modern aberrationcorrected transmission electron microscopes. Energy resolution has also been increasing steadily with the continuous improvement of electron monochromators. Electronic excitations however are known to be delocalised due to the long range interaction of the charged accelerated electrons with the electrons in a sample. This has made several scientists question the value of combined high spatial and energy resolution for mapping interband transitions and possibly phonon excitation in crystals. In this paper we demonstrate experimentally that atomic resolution information is indeed available at very low energy losses around 100 meV expressed as a modulation of the broadening of the zero loss peak. Careful data analysis allows us to get a glimpse of what are likely phonon excitations with both an energy loss and gain part. These experiments confirm recent theoretical predictions on the strong localisation of phonon excitations as opposed to electronic excitations and show that a combination of atomic resolution and recent developments in increased energy resolution will offer great benefit for mapping phonon modes in real space

    Barrier efficiency of sponge-like La2Zr2O7 buffer layers for YBCO-coated conductors

    Full text link
    Solution derived La2Zr2O7 films have drawn much attention for potential applications as thermal barriers or low-cost buffer layers for coated conductor technology. Annealing and coating parameters strongly affect the microstructure of La2Zr2O7, but different film processing methods can yield similar microstructural features such as nanovoids and nanometer-sized La2Zr2O7 grains. Nanoporosity is a typical feature found in such films and the implications for the functionality of the films is investigated by a combination of scanning transmission electron microscopy, electron energy-loss spectroscopy and quantitative electron tomography. Chemical solution based La2Zr2O7 films deposited on flexible Ni-5at.%W substrates with a {100} biaxial texture were prepared for an in-depth characterization. A sponge-like structure composed of nanometer sized voids is revealed by high-angle annular dark-field scanning transmission electron microscopy in combination with electron tomography. A three-dimensional quantification of nanovoids in the La2Zr2O7 film is obtained on a local scale. Mostly non-interconnected highly facetted nanovoids compromise more than one-fifth of the investigated sample volume. The diffusion barrier efficiency of a 170 nm thick La2Zr2O7 film is investigated by STEM-EELS yielding a 1.8 \pm 0.2 nm oxide layer beyond which no significant nickel diffusion can be detected and intermixing is observed. This is of particular significance for the functionality of YBa2Cu3O7-{\delta} coated conductor architectures based on solution derived La2Zr2O7 films as diffusion barriers.Comment: Accepted for publication in Superconductor Science and Technolog

    Strain accommodation through facet matching in La1.85_\text{1.85}Sr0.15_\text{0.15}CuO4_\text{4}/Nd1.85_\text{1.85}Ce0.15_\text{0.15}CuO4_\text{4} ramp-edge junctions

    Get PDF
    Scanning nano-focused X-ray diffraction (nXRD) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) are used to investigate the crystal structure of ramp-edge junctions between superconducting electron-doped Nd1.85_\text{1.85}Ce0.15_\text{0.15}CuO4_\text{4} and superconducting hole-doped La1.85_\text{1.85}Sr0.15_\text{0.15}CuO4_\text{4} thin films, the latter being the top layer. On the ramp, a new growth mode of La1.85_\text{1.85}Sr0.15_\text{0.15}CuO4_\text{4} with a 3.3 degree tilt of the c-axis is found. We explain the tilt by developing a strain accommodation model that relies on facet matching, dictated by the ramp angle, indicating that a coherent domain boundary is formed at the interface. The possible implications of this growth mode for the creation of artificial domains in morphotropic materials are discussed.Comment: 5 pages, 4 figures & 3 pages supplemental information with 2 figures. Copyright (2015) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in APL Mat. 3, 086101 (2015) and may be found at http://dx.doi.org/10.1063/1.492779

    Interplay of atomic displacements in the quantum magnet (CuCl)LaNb2O7

    Full text link
    We report on the crystal structure of the quantum magnet (CuCl)LaNb2O7 that was controversially described with respect to its structural organization and magnetic behavior. Using high-resolution synchrotron powder x-ray diffraction, electron diffraction, transmission electron microscopy, and band structure calculations, we solve the room-temperature structure of this compound [alpha-(CuCl)LaNb2O7] and find two high-temperature polymorphs. The gamma-(CuCl)LaNb2O7 phase, stable above 640K, is tetragonal with a(sub) = 3.889 A, c(sub) = 11.738 A, and the space group P4/mmm. In the gamma-(CuCl)LaNb2O7 structure, the Cu and Cl atoms are randomly displaced from the special positions along the {100} directions. The beta-phase [a(sub) x 2a(sub) x c(sub), space group Pbmm] and the alpha-phase [2a(sub) x 2a(sub) x c(sub), space group Pbam] are stable between 640 K and 500 K and below 500 K, respectively. The structural changes at 500 K and 640 K are identified as order-disorder phase transitions. The displacement of the Cl atoms is frozen upon the gamma --> beta transformation, while a cooperative tilting of the NbO6 octahedra in the alpha-phase further eliminates the disorder of the Cu atoms. The low-temperature alpha-(CuCl)LaNb2O7 structure thus combines the two types of the atomic displacements that interfere due to the bonding between the Cu atoms and the apical oxygens of the NbO6 octahedra. The precise structural information resolves the controversy between the previous computation-based models and provides the long-sought input for understanding the magnetic properties of (CuCl)LaNb2O7.Comment: 12 pages, 10 figures, 5 tables; crystallographic information (cif files) include
    • …
    corecore