3 research outputs found

    AquaHet-PSO: An Informative Path Planner for a Fleet of Autonomous Surface Vehicles with Heterogeneous Sensing Capabilities based on Multi-Objective PSO

    Get PDF
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivativesThe importance of monitoring and evaluating the quality of water resources has significantly grown over time. To achieve this effectively, an option is to employ an intelligent monitoring system capable of measuring the physical and chemical parameters of water. Surface vehicles equipped with sensors for measuring water quality parameters offer a viable solution for these missions. This work presents a novel approach called AquaHet-PSO, which addresses the challenge of simultaneously monitoring multiple water quality parameters with several peaks of contamination using a heterogeneous fleet of autonomous surface vehicles. Each vehicle in the fleet possesses a different set of sensors, such as number of sensors and sensor types, which is the definition provided by the authors for a heterogeneous fleet. The AquaHet- PSO consists of three main phases. In the initial phase, the vehicles traverse the water resource to obtain preliminary models of water quality parameters. These models are then utilized in the second phase to identify potential contamination areas and assign vehicles to specific action zones. In the final phase, the vehicles focus on a comprehensive characterization of the parameters. The proposed system combines several techniques, including Particle Swarm Optimization and Gaussian Processes, with the integration of genetic algorithm to maximize the distances between the initial positions of vehicles equipped with identical sensors, and a distributed communication system in the final phase of the AquaHet-PSO. Simulation results in the Ypacarai lake demonstrate the effectiveness and efficiency of AquaHet-PSO in generating accurate water quality models and detecting contamination peaks. The proposed method demonstrated improvements compared to the lawnmower approach. It achieved a remarkable 17% improvement, on r-squared data, in generating complete models of water quality parameters throughout the lake. In addition, it achieved a 230% improvement in accurate characterization of high pollution areas and a 24% increase in pollution peak detection specifically for heterogeneous fleets equipped with four or more identical sensors.Ministerio de Ciencia e Innovaci贸n PID2021-126921OB-C21 TED2021-131326BC21Universidad de Sevill

    AquaFeL-PSO: A Monitoring System for Water Resources using Autonomous Surface Vehicles based on Multimodal PSO and Federated Learning

    Full text link
    The preservation, monitoring, and control of water resources has been a major challenge in recent decades. Water resources must be constantly monitored to know the contamination levels of water. To meet this objective, this paper proposes a water monitoring system using autonomous surface vehicles, equipped with water quality sensors, based on a multimodal particle swarm optimization, and the federated learning technique, with Gaussian process as a surrogate model, the AquaFeL-PSO algorithm. The proposed monitoring system has two phases, the exploration phase and the exploitation phase. In the exploration phase, the vehicles examine the surface of the water resource, and with the data acquired by the water quality sensors, a first water quality model is estimated in the central server. In the exploitation phase, the area is divided into action zones using the model estimated in the exploration phase for a better exploitation of the contamination zones. To obtain the final water quality model of the water resource, the models obtained in both phases are combined. The results demonstrate the efficiency of the proposed path planner in obtaining water quality models of the pollution zones, with a 14%\% improvement over the other path planners compared, and the entire water resource, obtaining a 400%\% better model, as well as in detecting pollution peaks, the improvement in this case study is 4,000%\%. It was also proven that the results obtained by applying the federated learning technique are very similar to the results of a centralized system

    An Informative Path Planner for a Swarm of ASVs Based on an Enhanced PSO with Gaussian Surrogate Model Components Intended for Water Monitoring Applications

    Get PDF
    Controlling the water quality of water supplies has always been a critical challenge, and water resource monitoring has become a need in recent years. Manual monitoring is not recommended in the case of large water surfaces for a variety of reasons, including expense and time consumption. In the last few years, researchers have proposed the use of autonomous vehicles for monitoring tasks. Fleets or swarms of vehicles can be deployed to conduct water resource explorations by using path planning techniques to guide the movements of each vehicle. The main idea of this work is the development of a monitoring system for Ypacarai Lake, where a fleet of autonomous surface vehicles will be guided by an improved particle swarm optimization based on the Gaussian process as a surrogate model. The purpose of using the surrogate model is to model water quality parameter behavior and to guide the movements of the vehicles toward areas where samples have not yet been collected; these areas are considered areas with high uncertainty or unexplored areas and areas with high contamination levels of the lake. The results show that the proposed approach, namely the enhanced GP-based PSO, balances appropriately the exploration and exploitation of the surface of Ypacarai Lake. In addition, the proposed approach has been compared with other techniques like the original particle swarm optimization and the particle swarm optimization with Gaussian process uncertainty component in a simulated Ypacarai Lake environment. The obtained results demonstrate the superiority of the proposed enhanced GP-based PSO in terms of mean square error with respect to the other techniques
    corecore