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Abstract: Controlling the water quality of water supplies has always been a critical challenge,
and water resource monitoring has become a need in recent years. Manual monitoring is not
recommended in the case of large water surfaces for a variety of reasons, including expense and
time consumption. In the last few years, researchers have proposed the use of autonomous vehicles
for monitoring tasks. Fleets or swarms of vehicles can be deployed to conduct water resource
explorations by using path planning techniques to guide the movements of each vehicle. The main
idea of this work is the development of a monitoring system for Ypacarai Lake, where a fleet of
autonomous surface vehicles will be guided by an improved particle swarm optimization based
on the Gaussian process as a surrogate model. The purpose of using the surrogate model is to
model water quality parameter behavior and to guide the movements of the vehicles toward areas
where samples have not yet been collected; these areas are considered areas with high uncertainty or
unexplored areas and areas with high contamination levels of the lake. The results show that the
proposed approach, namely the enhanced GP-based PSO, balances appropriately the exploration
and exploitation of the surface of Ypacarai Lake. In addition, the proposed approach has been
compared with other techniques like the original particle swarm optimization and the particle
swarm optimization with Gaussian process uncertainty component in a simulated Ypacarai Lake
environment. The obtained results demonstrate the superiority of the proposed enhanced GP-based
PSO in terms of mean square error with respect to the other techniques.

Keywords: particle swarm optimization; gaussian process; water monitoring; Ypacarai Lake; autonomous
surface vehicles; machine learning

1. Introduction

Water is required for the survival of all living beings and covers a considerable
part of the surface of the Earth. Freshwater makes up only a small percentage of the
total. Freshwater is now polluted by effluent discharged without treatment from human
activities such as industry and agriculture, which has a negative impact on the aquatic
ecosystems of a region. The serious situation in the largest lake in Paraguay, Ypacarai
Lake [1], is one example. The lake has a significant impact on the environment, public
health and the local economy. Nonetheless, the lake has been plagued by algae blooms
in recent years, which are caused by an abundance of nutrients in the water, a condition
known as eutrophication [2]. Algae blooms are regarded as a major issue because they are
not only harmful to human health, but also deplete the oxygen supply in the water [1,2].

Monitoring of water resources is one option to address this problem. This task is critical
because, with the required sensors, variables such as pH, turbidity, dissolved oxygen and
CO2 levels, among others, can be calculated and actions can be taken based on the obtained
data, with the aim of maintaining or improving the water quality. Nevertheless, the
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traditional monitoring system has many disadvantages, such as the cost of the equipment,
time consumption and the collected data will not be enough for a good modeling of the
water quality. Monitoring with three fixed stations, as it is being done in the Ypacarai
Lake [1], will not be efficient either due to the large surface area of the lake. In addition, the
data provided do not generate a real model of the conditions of the lake water. In contrast,
implementing a monitoring system using Autonomous Surface Vehicles (ASVs) (Figure 1),
as in [1,2], will reduce human intervention, cost, and time spent for collecting data [3]. This
monitoring system consists of deploying an ASV or a fleet of ASVs equipped with water
quality sensors, in a water body, incorporating a guidance, navigation and control (GNC)
system to guide the vehicles across the water surface.

Figure 1. Autonomous surface vehicle using for the monitoring task.

GNC systems allow ASVs to move from one point to another on a determinate path
autonomously. In the guidance system, the paths to be followed by the vehicles are
generated. They can be generated by a global path planner, which creates an initial path
with previous information, and a local path planner, which adapts the trajectories planned
by the global planner with environmental information [4]. In a simple monitoring task, the
data collected by the ASVs are not used to recalculate the path; the vehicles only travel
through a defined path [5]. In contrast, an informative global path planning algorithm [6]
generates an optimal path for the monitoring of the water resource and develops a model
based on machine learning (ML) with the intention of estimating the state of the water body.

This work seeks to make up for the deficiency of simple monitoring tasks by imple-
menting an informative path planning, an adapted version of a Particle Swarm Optimiza-
tion (PSO) algorithm [7] with a Gaussian Process (GP) [8], as an underlying surrogate
model. Each of the ASVs from the fleet is represented by a particle of the swarm. With the
proposed algorithm, the movements of the ASVs are determined by the model given by
the GP, and also by the parameters of the PSO algorithm. After a certain distance traveled
by the ASVs, data is collected, and the GP is updated accordingly. To explore the surface
of the water resource, the uncertainty of the GP model is used, and to exploit areas with
high contamination levels, the mean of the surrogate model is considered. The objective of
the proposed approach is to obtain a suitable regression model of contamination levels of
water resources in a limited time. Using the mean of the surrogate model, Ypacarai Lake as
ground truth, and the considerable reduction in monitoring time are the main differences
between the present work and the previous one [9].

The main contributions of this paper are:

• The development of an informative path planner for a swarm of ASVs for the mon-
itoring system of a water resource based on an improved meta-heuristic algorithm,
PSO, with a GP as the underlying surrogate model.
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• The application of the proposed path planning using as the simulated scenario
Ypacarai Lake, showing the superiority of the proposed approach with respect to
other techniques.

This paper features the following sections: Section 2 contains several relevant works
related to the proposed approach. Section 3 includes the statement of the problem and the
main assumptions considered solving the monitoring problem. In Section 4 the proposed
approach, based on PSO and GP, is described. Section 5 contains the simulation results
obtained to validate the system. Section 6 includes the conclusions and future works.
Finally, Appendix A, shows some obtained results of hyper-parameter optimization.

2. Related Works

Autonomous vehicles, both aquatic and aerial, have been the subject of extensive
research in the previous decade [10]. Within the applications of autonomous vehicles,
monitoring of water resources can be found [1,11,12]. The task is carried out by equipping
an ASV with water quality sensors. To guide the vehicles, in [1], the authors propose an
offline path planning of an ASV using a meta-heuristic technique, Genetic Algorithm (GA),
and model the monitoring problem as the classical Travelling Salesman Problem (TSP).
The main objective of the proposed offline path planning is to maximize the coverage of
the surface of Ypacarai Lake. For this reason, a set of beacons located at the coast of the
lake was considered. In [13], the authors extend the previous work, the main difference
lies in the model of the monitoring problem, the problem is modelled using the Chinese
Postman Problem (CPP). The CCP allows the planning of a path that repeats the visit
to the beacons of the graph, different from TSP. As a result, the distance traveled by the
ASV and the covered area increase its values. Furthermore, in [2], the authors combine
exploration and intensification capabilities of their approach by online learning of the
scenario. A global path planning is developed in [11] using Deep Reinforcement Learning
(DRL). The authors model the monitoring problem as a Markov Decision Process, the states
are represented as an RGB image of Ypacarai Lake and the potential positions of the ASV
are the actions. In a more recent work [3], the authors work with multiple agents and the
strategy applied was a centralized approach. In [14], the authors compare the performance
of the Evolutionary Algorithm (EA) and deep reinforcement learning methodologies as
monitoring systems. The results demonstrate the efficiency of the DRL technique under
high-resolution conditions. The EA, on the other hand, delivers better results with lower
resolution scenarios. Furthermore, the number of required hyper-parameters differs for
each methodology; the evolutionary method requires few hyper-parameters to achieve
a stable operation, whereas the DRL requires many. In addition, the DRL shows a high
sensibility with respect to some hyper-parameters. However, DRL outperforms for the
non-homogeneous patrolling problem for higher resolution scenarios, which demonstrates
that the DRL methodology is more suitable as the complexity of the problem increases.

Bio-inspired techniques have been mainly employed as path planners and monitoring
algorithms for water resources [15]. Bio-inspired techniques based on Swarm Intelligence
(SI) have the advantage of working with several agents/particles simultaneously. Another
advantage of SI is to efficiently solve nonlinear real world problems [16]. For path planning,
algorithms as Ant Colony Optimization (ACO) [17,18], Bat Algorithm (BA) [19,20], Firefly
Algorithm (FA) [21,22], and PSO [23,24], among others, can be used. In Table 1 is shown a
comparison between some SI algorithms [25,26].

PSO algorithm is selected to be used in this work due to the easy implementation of
the algorithm, the low number of parameters that must be adjusted and the large number of
articles found where PSO and improved versions of PSO are applied to solve path planning
problems for mobile robots and unmanned vehicles. In [23], three improved versions
of PSO are proposed with the objective to enhance the robustness and avoid premature
convergence. The strategies applied by the authors are the dynamic modification of the
coefficients of PSO (inertia, local best and global best) and a random grouping inversion.
The results demonstrate the effectiveness of the modifications, showing that by varying
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the coefficients and dividing the swarm into subgroups, the algorithm achieves better
performance. In [24], the authors apply the Chaotic and Share-learning Particle Swarm
Optimization (CSPSO) to solve the TSP problem and multi-objective path control. The
algorithm is employed for marine environments and, in addition to improve the PSO
algorithm, two-level collision avoidance rules and the impact of currents are provided. The
PSO technique can also be combined with Elite Group-based Evolutionary Algorithms
(EGEA), as in [27]. In EGEA, each individual of the evolutionary algorithm is capable to
create its own groups of new solution. Afterward, according to the method, the individual
with the best new solution of each group (Group Individual Elitist Selection (GIES)) or
the best individuals in the whole group (Whole Population Elitist Selection (WPES)) are
selected to the next generation. Based on the results, the best method for the PSO algorithm
is the GIES. The reason for this is the influence of the best local of the particle. With the
WPES method, particles with poor solutions are discarded and, as a result, huge changes
are constantly made and the particle cannot maintain its best position, instead of the GIES
method, which helps the selection of the best child of each particle.

Table 1. Comparison between SI techniques.

Algorithm Biological Motivation Advantages Disadvantages

ACO Ant colonies - Effective in discovering good solutions. - Theoretical analysis is difficult.

- Adaptation to changes. - Research is more experimental than
theoretical.

- Converge. - The convergence time is uncertain.

BA Echolocation of bats - Few parameters. - Can get trapped in multi-dimensional
functions.

- Simple to implement.

- If the dimensions of the problem
increase, the chances of converging
towards a global optimal solution
decrease.
- Low accuracy.

FA Fireflies attraction - Simple to implement. - Slow convergence.

- Parallel implementation. - Get easily stuck in local optimum for
multi-modal problems.
- Do not save the best solutions.

PSO Bird flocks - Simple to implement. - Get stuck in local optimum.
- Few parameters to be tuned. - Dispersion problems cannot be solved.

- Do not overlap or mutate - Initial design parameters can be difficult
to define.

A suitable path for monitoring systems can be generated using the data collected
by the sensors. However, the collected data must be of high-quality. This problem is
known as Informative Path Planning (IPP) problem [28]. Several approaches based on
heuristics and approximation techniques have been proposed to solve this problem [29].
Informative Path Planning (IPP) techniques based on GP have been used to maximize the
information collected by sensors [12,30]. Bayesian optimization (BO) based path planning
with GP as underlying surrogate model is proposed in [12]. The authors present an analysis
regarding the main components of the strategy, the acquisition functions (probability of
improvement, expected improvement, scaled expected improvement, etc.) and the kernel
(constant, radial basis function, Matérn, among others). Moreover, new adaptations of the
classical methods of the acquisition functions are developed to improve the monitoring
task of an ASV. An extension of this work can be found in [31], where the authors improved
the monitoring system by adding a fusion of acquisitions functions. The purpose of
the modification is that, when several water quality parameters are considered, a multi-
function estimation scenario is generated due to different acquisition functions obtained.
In [5], an online IPP framework is proposed. The authors use a sparse GP method to
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estimate sea surface temperature values. For the generation of the next point to visit, the
path planning algorithm uses the variance in current prediction and remaining mission
time. The results of the IPP are compared with the lawn mower paths. The IPP presents
better match with the ground truth and lower root mean square error values than the lawn
mower paths. IPP can also be used in aerial unmanned autonomous vehicles, as in [32],
where the authors proposed two novel acquisitions functions for IPP with the objective of
identifying anomalies in unknown environments.

In monitoring tasks, meta-heuristic algorithms such as GA [1,13] and PSO [23] try to
maximize the covered area of the surface of water resources. However, these algorithms
are unable to create a model of the water quality. Accordingly, a novel IPP is proposed in
this work, combining meta-heuristic algorithm (PSO) with GP as surrogate model. In order
to generate an optimal path to collect high-quality samples, the collected data is considered.
By considering the collected data, the ASVs will be able to explore the water surface, by
taking into consideration the uncertainty of the GP, and to exploit the sites with the highest
levels of contamination, by weighting the movements of the ASVs with respect to the mean
of the GP. Therefore, the proposed approach tries to balance adequately the mean and
uncertainty of the GP in the monitoring task. Since the proposed approach incorporates
up to four components (global best, local best, mean of the GP, and uncertainty of the
GP) in the movement calculation of the ASV, suitable values for them should be selected.
For this purpose, a BO-based hyper-parameter optimization will be applied. It uses prior
information to obtain the parameter distribution, and it is widely used for machine learning
models [33–35].

3. Statement of the Problem and Assumptions

This section describes the monitoring problem that an ASV fleet must address, as well
as the key assumptions that were used to generate the simulated environment.

3.1. Monitoring Problem

The purpose of the monitoring system is to create a water quality model of water re-
sources. To achieve the objective, the monitoring system consists of several ASVs equipped
with water quality measurement sensors S. The real function of the water quality model
can be represented as f (x). The input of the function x is a location (x, y) in the water
resource. A number of n measurements must be made by the ASVs in an environment
in a sub-space of the Rn space. The samples taken by the sensors are stored in a vector
s = {sk | k = 1, 2, . . . , n}, where the term k refers to the number of measures taken. In
location qk, the ASVs perform the kth measurement. The vector q = {qk | k = 1, 2, . . . , n}
contains the locations of the ASVs. The vector D = {(qk, sk) | k = 1, 2, . . . , N} corre-
sponds to the data provided by the fleet of ASVs, the input vector xk is assigned to the
locations of the vehicles qk, and the sensor read sk is assigned to the output value. Thus,
the representation of each Dk is

sk = f (qk) (1)

The Equation (2) represents the regression model that estimates the relation between
the values of water quality y and the locations x in the entire domain of Ypacarai Lake

y ≈ f (x), (2)

and, the real function f (x) can be approximated given enough data D.
The evaluation of the proposed approach is done using the Mean Square Error (MSE).

In regression models, the MSE is usually used, for that reason, is a suitable metric for
evaluating the model that has been obtained. The Equation (3) is used to calculate the MSE,
where f (x) is the ground truth or real contamination map and y the resulting prediction of
the surrogate model. The ground truth, in this work, is a distribution map of Ypacarai Lake.
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MSE( f (x), y) =
1

nsamples

nsamples−1

∑
k=0

( f (xk)− yk)
2 (3)

The monitoring system seeks to model the water quality of the lake as accurately as
possible. Because of this, the metric used to evaluate whether the path is optimal is the
Equation (3). That is, the closer the collected data is to the real data (low MSE), the better
the generated path.

3.2. Assumptions

For the implementation of the proposed monitoring system, several assumptions
are considered:

• Ypacarai Lake: The model defined for the monitoring space is modelled as a matrix
N , where each element Ni,j has a value indicating the state of the grids. The matrix is
composed by m× n squares of side d. If a square space is a natural obstacle, prohibited
zone, land, among others, the square is painted white and has a value of 0, otherwise,
the square is black and has a value of 1. Figure 2 shows the occupancy grid model of
Ypacarai Lake used in the proposed approach. The ASVs are unable to move on land
where the color of the square is white. For the simulations, the distribution map is
scaled, each element Nij is 100 m × 100 m.

• Coordinator: The system used for the fleet of ASVs is centralized. Therefore, the ASVs
are linked to a global coordinator through the cloud, via 4 G or 5 G. In addition, it is
considered a safety zone. For safety reasons, the ASVs are not allowed to travel near
the shore of the lake. The distance considered is 2 squares of side d.

• Sensors: The sensors that take the samples of the water quality parameters are consid-
ered ideal. As a result, the collected data by the ASVs are noiseless. As well, the GPS
equipped in the ASVs are considered ideal, so there are no errors in the positions of
the vehicles. The maximum speed of the ASVs is 2 m/s.

• Navigation: The motions of the ASVs are error-free, and as a result, the traveled trajec-
tories are faultless. Furthermore, obstructions and collisions are not taken into account.

• Vehicle autonomy: Battery usage is deemed adequate for the duration of the test. The
maximum distance traveled by the ASVs is approximately 20,000 m.

Figure 2. Model of the occupancy grid of Ypacarai Lake.

4. Proposed Approach

The main components and the functionality of the proposed methodology are de-
scribed in this section. A review of the original PSO algorithm is performed first. Second,
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the underlying GP-based surrogate model that will be used to conduct the ASVs to high-
uncertainty and high-contamination locations is outlined. Third, the proposed PSO for
monitoring tasks is discussed. Finally, the hyper-parameter optimization that will be used
is described.

4.1. Particle Swarm Optimization

PSO, proposed by [7], is a meta-heuristic optimization technique inspired in the social
behavior of bird flocks. In PSO, each individual is referred to as a particle and represents
a candidate solution for the optimization problem. Thus, a group of particles is called a
swarm. Each particle moves around in multidimensional search-space, learning from their
experience and from the other particles of the swarm. The velocity vt+1

i and the position
xt+1

p of every particle p is updated at each iteration t according to the following equations:

vt+1
p = wvt

p + c1rt
1

[
pbestt

p − xt
p

]
+ c2rt

2

[
gbestt − xt

p

]
(4a)

xt+1
p = xt

p + vt+1
p (4b)

where w represents the inertia of the particle, pbestt
p is the local best found by the particle

(the optimal result of the particle), gbestt is the global best found by the swarm each
time (the optimal result of the swarm). The terms vt

p and xt
p represents the speed and the

position (coordinates (x, y)) of the particle p at iteration t, respectively. The constants c1
and c2 are weights that determinate the importance of the local and global best components,
known as acceleration coefficients. In other words, c1 and c2 are two stochastic acceleration
components that guide the search toward optimum solution [7,36]. rt

1 and rt
2 are random

values, in the range of [0, 1], that change their values at each iteration.

4.2. Gaussian Process Regression (GPR)

GP is based on multivariate normal distribution. As a result, the model can fit a
set of points easily, each point represents a random variable. According to [37], GP is
defined by a mean function and a covariance o kernel function. The main component is the
kernel function, since, generally, the mean function is considered zero. The kernel is the
function in charge of determining the expected shape, variability and smoothness of water
quality variables that will be monitored in the proposed system. The selected kernel for the
proposed approach is the Radial Basis Function (RBF) kernel, the reason is that in [12], by
analyzing the different kernels, the results show that RBF is the most suitable kernel for
aquatic environments.

In order to update the GPR, the input data D is marginalized and conditioned [37]. The
Equation (5) is applied for the calculation of the unknown response of the GP (µ(x∗), σ(x∗)).

µ f̂ (xi)∗ |D = KT
∗K−1 f (x) (5a)

σ f̂ (xi)∗ |D = K∗∗ − KT
∗K−1K∗ (5b)

From the fitted kernel K, K∗∗ and K∗ are taken, where covariances between known
data k(x, x), unknown data k(x∗, x∗) and between both the known and unknown data
k(x, x∗) are included

K =

[
K K∗

KT∗ K∗∗

]
=

[
k(x, x) k(x, x∗)

k(x∗, x) k(x∗, x∗)

]
(6)
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4.3. Monitoring System Based on PSO and GP

The main objective of the proposed approach is to overcome the limitations of the
original PSO for the monitoring tasks and to improve the response time of the algorithm
from the previous work [9]. This work proposes a path planning algorithm, where the
uncertainty and the mean of the surrogate model is considered to guide the fleet of ASVs
towards unexplored areas and zones with high contamination levels of the search space.
In the PSO algorithm, the fleet is represented by a swarm and each ASV is considered a
particle. The proposed approach does not take samples of the water at each iteration of the
PSO, it only collects data after the distance traveled dist between the current location of
the ASVs (xt) and the last location where the samples have been taken (xsample) is equal or
greater than l:

l = λ× `t (7)

where λ is a ratio of one of the different length scales and `t refers to the posterior length
scale of the surrogate model [31]. This condition is applied to enhance the method pro-
vided in [9] in terms of simulation time by minimizing the quantity of data collected. By
decreasing the amount of data, the GP does not need to update each iteration of the PSO,
drastically decreasing the execution time of the monitoring system.

The pseudo-code of the proposed approach is shown in Algorithm 1 and the flowchart
of the proposed approach is shown in Figure 3. At the beginning, the performance of the
system is like the original PSO, since the initial values of the terms c3 and c4 (Figure 4) are
set to 0. After the distance l is reached, the system takes samples of the water, the surrogate
model is updated, and the GP calculate the maximum uncertainty and the maximum
mean of the model to guide the movements of the swarm. The speeds of the ASVs is
updated according to Equation (8) and the positions of the ASVs is updated according to
Equation (4b).

vt+1
p = wtvt

p + c1rt
1[pbestt

p − xt
p] + c2rt

2[gbestt − xt
p] + c3rt

3[max_unt − xt
p]+

c4rt
4[max_cont − xt

p]
(8)

Algorithm 1: Enhanced GP-based PSO pseudo-code.

x0
p ← Initialize PSO; // where x0 represents the initial position of p

for t to I do
pbestp, gbest ← Evaluate fitness function;
dist = disttotal − distsample ← Calculate distance;
if dist ≥ l then

s ← Collect sensor data;
σt, µt ← Update GP;
maxσt, maxµt ← Calculate maximum values;
max_unt, max_cont ← Find coordinates of the maximum values;

end
vt+1

p , xt+1
p ← Update speed and position of the particles;

end
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Figure 3. Flowchart of the proposed approach.

The coordinates of the maximum uncertainty maxσt is represented by the term
max_unt and the term max_cont represents the coordinates of the maximum mean of
the model maxµt. Similar to c1 and c2, the coefficients c3 and c4 are two stochastic accel-
eration components that guide the search toward areas with high uncertainty and areas
with high levels of contamination, respectively. These four coefficients have to be tuned.
Furthermore, Figure 4 illustrates the components of the speed vector of ASVs.

In Algorithm 1 and in Figure 3, disttotal is the average distance traveled by each vehicle
p from the initial location to the current location and distsample is the average distance
traveled from the initial location to the location where the last sample was taken. The
number of iterations to be performed is represented by I.
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Figure 4. Components of proposed PSO.

In addition to the GP-based enhancements, the inertia is modified. The objective is
the exploration and exploitation of the surface of the lake. Applying the Equation (9), at
the beginning, the ASVs will focus on the exploration and, as iteration increase, the ASVs
will focus on local exploitation of the lake [23].

wt = wmax − t ∗ ((wmax − wmin)/I) (9)

4.4. Hyper-Parameter Optimization

In order to obtain a good performance of the proposed approach, several hyper-parameters
have to be fine-tuned; the PSO hyper-parameters, c1, c2, c3 and c4; the GP length scale `;
and the ratio λ. Fine-tuning hyper-parameters manually is tedious and time-consuming. In
addition, this does not guarantee that the best values are obtained. Consequently, hyper-
parameter optimization has been proposed by numerous researchers, for meta-heuristics
algorithms [38,39], evolutionary algorithms [33], and neural networks [40], among others.
Hyper-parameter optimization has the following advantages [41]: (i) Human effort is reduced,
(ii) the algorithm has a better performance, and (iii) experiments with machine learning are
more effective. Motivated by these reasons, hyper-parameter optimization has been applied
in this work. The technique selected to perform the tuning is the BO.

According to [34], BO is an optimization algorithm very effective to solve tuning
tasks and can be applied in functions difficult to compute, in functions that the difficulty
to analyze their derivatives is high or in non-convex functions. Applying the Bayes
theorem (10), the algorithm combines previous information of the unknown function, with
data information, G, this allows to acquire the posterior of the function:

P(F|G) = P(G|F)× P(F) (10)

where P(F|G) is the posterior probability of the model F, P(G|F) is the likelihood of
overserving G given model F, and P(F) is the prior probability.

BO optimizes a function using a surrogate model, which, considering the information
provided by the evaluated points, is updated [33]. In order to balance the exploration
and the exploitation in the selection of the next point to examine, acquisition function is
used (Probability of improvement (PI) [42], Expected improvement (EI) [43], GP upper
confidence bound (GP-UCB) [44]) . For a detailed analysis of BO-based hyper-parameter
optimization, readers are referred to [33–35]. According to the results provided in [34], EI
and GP-UCB functions are faster than PI, and EI is less complicated than GP-UCB since
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there are no hyper-parameters that need to be tuned in EI as in GP-UCB. For these reasons,
EI will be used in this work.

5. Performance Evaluation

In this section, the parameters used in the simulations are described, as well the results
of the simulations are presented and discussed.

5.1. Simulation Setup

In this subsection, the ground truth and the simulation parameters are defined.

5.1.1. Ground Truth

The designed algorithm is available at https://github.com/MicaelaTenKathen/EGPPSO_
ASV.git (accessed on 3 July 2021) and has been developed in Python using Scikit-learn (
https://scikit-learn.org/stable/, accessed on 3 July 2021), DEAP (https://deap.readthedocs.io/
en/master/, accessed on 3 July 2021) and Bayesian optimization (https://github.com/fmfn/
BayesianOptimization, accessed on 3 July 2021) modules. The ground truth is a representation
of Ypacarai Lake. The matrixN has a dimension of 100 px× 150 px, where each elementNij is
100 m × 100 m. For the distribution map of the water quality parameter, a benchmark function
will be used, the Shekel Function (SF) (Equation (11)). The SF has the advantage of being a
multidimensional, multimodal, continuous, and deterministic function [31].

fShekel(x) =
M

∑
i=1

1
ci + ∑N

j=1(xj − aij)2
(11)

The function has two arguments, aij and ci, that allows to specify several maximum
locations. The elements aij are located in matrix A, which has a size of M× N, where M
denotes the number of maximum points and N denotes the space dimensions. The inverse
significance value of the maximal locations is defined by matrix c, whose elements are ci
and the size is M× 1. In this work, N is set in 2, multiple simulations will be performed
with different values of M in range of [2, 5], and the elements of c will have the same value.
In order to validate the proposed approach, the monitoring system is tested using ten
different ground truths generated by Equation (11) and pre-processed to fit the Ypacarai
Lake. Examples of ground truths are shown in Figure 5. The maximum locations can be in
restricted zones.
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5.1.2. Simulation Parameters

For the mission, four ASVs are considered. Each vehicle must travel at least 15,000
meters (scaled) to ensure effective monitoring. Therefore, the number of iterations is set
to 6000, where disttotal ≈ 17, 000 m of each ASV. The maximum speed of the ASVs will be
2 m/s in the simulations.

Figure 5. Example of 3 ground truths of the 10 simulated ground truths obtained with the Shekel
function using the Ypacarai Lake as simulated scenario.

5.1.2. Simulation Parameters

For the mission, four ASVs are considered. Each vehicle must travel at least 15,000 m
(scaled) to ensure effective monitoring. Therefore, the number of iterations is set to 6000,
where disttotal ≈ 17, 000 m of each ASV. The maximum speed of the ASVs will be 2 m/s in
the simulations.

https://github.com/MicaelaTenKathen/EGPPSO_ASV.git
https://github.com/MicaelaTenKathen/EGPPSO_ASV.git
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://deap.readthedocs.io/en/master/
https://deap.readthedocs.io/en/master/
https://github.com/fmfn/BayesianOptimization
https://github.com/fmfn/BayesianOptimization
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5.2. Hyper-Parameter Optimization

Before simulating the monitoring system, fine tuning of the hyper-parameters must be
performed. BO is used for this purpose, recall that EI is the selected acquisition function, as
described in Section 4.4. Considering Table A5, in Appendix A, the RBF with length scale
equal to 1.0 is used as the GP kernel. Additional settings that must be established in the
Bayesian optimization module are the number of iterations of the BO and the initial points.
The number of iterations is set as 20, and it is considered 10 random points as initial points.
The hyper-parameters to be adjusted, and their respective bounds are shown in Table 2.

Table 2. Range for hyper-parameter optimization.

Hyper-Parameter Range

c1 [0, 4]
c2 [0, 4]
c3 [0, 4]
c4 [0, 4]
` [0.4, 1.0]
λ [0.1, 0.5]

The range of the hyper-parameters of the PSO (the coefficient acceleration of the local
best, c1; the coefficient acceleration of the global best, c2; the coefficient acceleration of the
maximum uncertainty, c3; and the coefficient acceleration of the maximum contamination,
c4) are specified according to [36,45]. To limit the range of values of the length scale of the
GP, `, the previous work is taken into account [9]. The results provided in [31] demonstrate
that the monitoring system performs better if the ratio of the Equation (7), λ, is in the range
of [0, 0.5]. However, one of the main objectives of this work is to improve the simulation
time of the algorithm, consequently, the range for λ is set to [0.1, 0.5], since, if λ = 0, the
algorithm will take data in each PSO iteration, increasing the execution time.

The proposed approach is simulated on 10 ground truths (cases). To obtain the optimal
algorithm performance, the hyper-parameters must be optimized for each case. The values
of the hyper-parameters in Table 3 are calculated in two ways: (i) The first optimization is
the tuning performed specifically for each case (Case 1 to Case 10) (best of each ground
truth); and (ii) the second optimization is the tuning using all cases (best of the whole
group). In other words, in (i) for each case, only the MSE of that case is considered in the
iterations of the BO, and in (ii), in each iteration of the BO, the mean of the MSE of all the
cases in the Table 3 are considered (Case 1 to Case 10). Hyper-parameters are optimized
with these two ways in order to compare the performance of the algorithm using the values
of the best of each ground truth and the best of the whole group. The values obtained with
BO, for a configuration of initial points, are shown in the Table 3.

Table 3. Values of the hyper-parameter optimization using RBF (` = 1.0) as kernel.

Case c1 c2 c3 c4 ` λ

1 1.9857 0.8604 2.8352 4 1 0.1
2 0.6741 0 3.4434 3.0503 0.6892 0.1
3 4 0 0.0464 1.4928 0.5178 0.1
4 3.7648 2.2512 1.9676 0.1526 0.4 0.1
5 2.1225 2.7236 0 0.7353 0.4 0.1
6 1.8154 3.1523 0 0.6271 0.4 0.1
7 1.6320 2.6733 2.3820 0 1 0.1
8 2.4401 3.5659 2.0532 0.1041 0.4 0.1
9 0.3339 3.8719 0 3.5302 0.8668 0.1

10 3.1286 2.568 0.7900 0 1 0.1
All 4 1.0830 1.1316 0 0.4 0.1
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These values are not suitable for all scenarios since they depend on the initial configu-
ration, the number of iterations of the BO, the kernel used as shown in Tables A1 and A3,
included in Appendix A. These tables correspond to the hyper-parameter optimization
applying Matérn (nu = 2.5, ` = 1.0) and RBF (` = 0.4) as kernel, respectively. In Table A5,
in Appendix A, the mean of the MSE and the variability, of all cases (Case 1 to Case All),
of the optimization of hyper-parameters with the different kernels used are shown. The
comparison between the MSE and the average distance traveled of each ASV of the best
hyper-parameters values for each case and the best hyper-parameters for the whole group
are shown in Table 4.

Table 4. Comparison of the MSE and the average distance.

Case Each Ground Truth All Ground Truths

MSE Average
Distance [m] MSE Average

Distance [m]

1 0.0063 17,042 0.0067 17,041
2 0.0067 17,915 0.0073 18,094
3 0.0086 17,033 0.0115 18,879
4 0.0109 17,059 0.0110 17,193
5 0.0138 16,574 0.0166 17,765
6 0.0038 15,992 0.0049 17,956
7 0.0067 17,042 0.0070 17,038
8 0.0080 16,755 0.0081 17,542
9 0.0042 16,901 0.0057 17,478
10 0.0022 17,038 0.0025 17,563

The obtained results reveal that the MSE of simulations performed using the best of
each case is lower than the simulations performed using the best hyper-parameters values
of the whole group, which is to be anticipated given that the goal is to reduce the error for
each ground truth. However, in some cases, there is not a significant difference in the MSE.
In Figure 6, the results for two ground truths are shown. The figures at the top represent
the movement of the ASVs and the uncertainty in the exploration of the lake surface. The
trajectory of each one of the four ASVs is represented by lines of different colors. The
water quality models generated by the enhanced GP-based PSO are shown at the bottom.
The first two graphs (Figure 6a,b) correspond to the same ground truth (Case 4) and the
last two belong to Case 9 (Figure 6c,d). The simulations Figure 6a,c are carried out with
the best hyper-parameters values of each case (Case 4 and Case 9), and Figure 6b,d are
carried out with the best hyper-parameters values for the whole group (All). The generated
water quality models are similar to their respective ground truths, demonstrating a good
performance of the proposed algorithm.

5.3. Comparison with Other Algorithms

After optimizing the hyper-parameters of the proposed approach, the performance of
the original PSO [7], the GP-based PSO [9] and the enhanced GP-based PSO are compared.
For the simulation of the three algorithms, the following adjustments are made: (i) The
number of iterations has remained constant as 6000; (ii) the original PSO and the GP-based
PSO collect data after some distance l (Equation (7)) is reached; (iii) case 0 is used as ground
truth, therefore, the best hyper-parameter values for this case are considered; (iv) the
hyper-parameters of the three algorithms are set to identical values (best values for case 0).
Regarding the second adjustment, this condition is applied due to the excessive amount of
time it would take for these algorithms to perform a simulation with 6000 iterations (about
more than a week running on an Ubuntu server with 2.24 GHz AMD 16-Core Processor
and 64 GB RAM), because in each iteration of the PSO, the GP is updated. The enhanced
GP-based PSO performs 6000 iterations in approximately 120 s. Besides, performing
simulations with only 200 iterations, as it is done in [9], is not efficient considering the
dimensions of the map and the speed of the ASVs. Considering the third adjustment, in
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several cases of hyper-parameter optimization (Table 3), one of the c has a value equal
to 0, so the influence that each term of Equation (8) has on the behavior of the proposed
approach, it will not be able to be observed. However, in Case 0, all c have values greater
than 0, allowing to observe the differences between the three algorithms when c3 and c4
are equal to 0 in the original PSO, and c4 equal to 0 in the GP-based PSO. The settings for
the simulations are summarized in Table 5.
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In addition to the values set for the proposed approach shown in Table 5, a fourth
simulation is made using the values of the best hyper-parameters values for the whole
group in the enhanced GP-based PSO.

The Figure 7 shows the simulation of the monitoring system using the three algorithms.
At the top, the movements of the ASVs are visualized, as well the uncertainty in the
exploration of Ypacarai Lake. Each colored line represents an ASV trajectory. At the
bottom, the water quality model generated by the surrogate model is shown. The Figure 7a
represents the monitoring system using the original PSO. As the performance of the
algorithm is based on the best local and the best global, the ASVs go towards one of the
maximum peaks of the ground truth and the vehicles get stuck on a local optimum. On
the other hand, using the GP-based PSO for the monitoring system (Figure 7b), the ASVs
further explore the surface of the lake, oscillating between maximum points of uncertainty.
When using the enhanced GP-based PSO for the monitoring of the lake (Figure 7c,d), the
vehicles explore the surface until they reach a point where they exploit it. This action is a
consequence of c3 and c4, the greater one of the coefficients of acceleration is, the more the
ASVs explore or exploit since terms 4 and 5 of Equation (8) focus on opposing objectives.
The difference between Figure 7c,d are the values of the hyper-parameters. In Figure 7c the
values are set as the Table 5 and in Figure 7d, the values are set as Case All (Table 3).

Comparing the obtained water quality models, the model generated by the GP-based
PSO is closer to the greatest peaks of the ground truth. Instead, observing the scale of the
graph, the first model estimated by the enhanced GP-based PSO achieves the minimum
value of the water quality parameters, thereby reaching the ground truth. The average
distance traveled by the ASVs with the original PSO is approximately 12,190 m. The reason
for the short distance traveled is that the ASVs get stuck in a local optimum. The ASVs
travel an average distance of 17,769 m when using the GP-based PSO, 17,937 m when using
the enhanced GP-based PSO (Case 0) and 17,829 m when using the enhanced GP-based
PSO (Case All).
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Table 5. Simulations adjustments.

Parameter / Hyper-Parameter Original PSO GP-Based PSO Enhanced GP-Based PSO

Number of ASVs 4 4 4
Maximum speed of the ASVs

(m/s) 2 2 2

Surface limits (m) x [0, 10,000] x [0, 10,000] x [0, 10,000]
y [0, 15,000] y [0, 15,000] y [0, 15,000]

Iterations 6000 6000 6000
Ground truth Case 0 Case 0 Case 0

w 1 - -
wmin - 0.4 0.4
wmax - 0.9 0.9

c1 1.9857 1.9857 1.9857
c2 0.8604 0.8604 0.8604
c3 - 2.8352 2.8352
c4 - - 4
` 1 1 1
λ 0.1 0.1 0.1
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surface (top) and mean of the surrogate model (bottom) using three different algorithms.

The Figure 8a,b show the comparison of the three algorithms, the original PSO, the
GP-based PSO and the enhanced GP-based PSO. However, in the Figure 8a,b is zoomed
to the last three intervals so that the mean of the MSE and the range of variability of each
algorithm can be differentiated. To obtain the mean of the MSE with its 95% confidence
interval, 30 initial points configurations of the ASVs are considered, and the ground truth
selected is the Case 0. The mean and standard deviation values have been computed using
intervals in the range [0, 6000] in steps of 400 since the quantity of data obtained in the tests
varied. The mean of the MSE of the algorithms fluctuates with time, as seen in Figure 8.
At the beginning, the original PSO has the highest value of the mean of the MSE and the
enhanced GP-based PSO (Case All) has the highest variability. Higher values of variability
are due to the number of samples, by taking more samples, the variability will decrease.
As the number of iterations increase, the mean of the MSE of the original PSO is the lowest
of the three, while the mean of the GP-based PSO is the greatest. After 6000 iterations,
the enhanced GP-based has the best mean of MSE and the lowest variability as shown in
Table 6.
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(a) (b)

Figure 8. MSE using the original PSO, the GP-based PSO and the enhanced GP-based PSO.

Table 6. Comparison between the three algorithms.

Algorithm MSE Average Distance [m]

Original PSO 0.0074 ± 0.0063 12,190
GP-based PSO 0.0087 ± 0.0045 17,769

Enhanced GP-based PSO
(Case 0) 0.0069 ± 0.0033 17,937

Enhanced GP-based PSO
(Case All) 0.0074 ± 0.0045 17,829

Discussion of the Results

The main results of this work are discussed below:

• The proposed enhanced GP-based PSO considers not only the area with the highest
uncertainty (unexplored areas) of the lake surface like in [9], but it also considers the
area with the highest contamination to carry out the monitoring task.

• The enhanced GP-based PSO is an algorithm capable to be used in any water resources.
The proposed approach based the path generation in the samples that is collected from
the surface of the water. As a consequence, the algorithm does not need to have more
information about the environment than the data collected by the sensors. In addition, it
is not necessary to perform previous calculations to generate an optimal path.

• To improve the simulation time of our previous work, data is collected from the sensors
and the surrogate model is updated only after the ASVs have traveled a distance
l. With this improvement, the algorithm is capable of performing 6000 iterations in
approximately 120 s.

• To obtain the most suitable values for the enhanced GP-based PSO, a tuning has been
carried out. The algorithm used for the hyper-parameter optimization is the BO and as
acquisition function the EI is used. For kernel selection, three functions were tested, the
Matérn (nu = 2.5, ` = 1.0), the RBF (` = 1.0), and RBF (` = 0.4). The function that
obtained the best MSE was the RBF (` = 1.0), therefore, it is used for the tuning task.

• With the hyper-parameter values obtained from the BO, the performance of three
algorithms, the original PSO, the GP-based PSO and the enhanced GP-based PSO,
were compared. The results showed that the proposed approach has the best MSE,
being approximately 7% lower than the MSE of the original PSO and 15% lower than
that of the GP-based PSO. Moreover, the enhanced GP-based PSO has the lowest
variability of the three algorithms.

6. Conclusions and Future Works

An upgraded version of the GP-based PSO described in [9] is presented in this work.
In a simulated scenario of Ypacarai Lake, four ASVs perform the monitoring mission.
However, the proposed approach can be used in any scenario. In addition to exploring
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the surface of the lake, the vehicles exploit areas with high contamination levels. This can
be achieved thanks to the uncertainty and the mean of the surrogate model. In order to
validate the proposed approach, the Shekel function was used to model the water quality
parameters of Ypacarai Lake. Before carrying out the simulations, the hyper-parameters
were optimized using Bayesian optimization and considering 10 ground truths. After
determining the optimal hyper-parameter settings, the performance of three algorithms
was compared, the original PSO, the GP-based PSO and the proposed approach. The
results show that the enhanced GP-based PSO, in simulation time, improves the GP-
based PSO, performing simulations with 6000 iterations in a short time. In addition, it
balances the exploration and exploitation of the surface of the lake. With the proposed
algorithm, the best MSE values are obtained, which means that the generated path is
optimal, since the generated model of the lake’s water quality is the most similar to the real
model. As future work, the proposed algorithm will be compared with informative path
planning algorithms designed for fleets or swarms of ASVs based on genetic algorithms,
other swarm intelligence algorithms and/or Bayesian optimization, among other things.
In addition, the algorithm is proposed to be improved by dynamically modifying the
coefficient acceleration using deep reinforcement learning in such a way that the ASVs
avoid getting stuck in a local optimum. Another improvement is to develop a monitoring
system using a multi-objective PSO, considering several functions as water quality models
at the same time. Each model could represent the data collected by a water quality sensor,
such as pH, conductivity, temperature, etc.
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Appendix A

In order to select the most suitable hyper-parameters for the proposed approach, three
hyper-parameter optimization based on Bayesian optimization (https://github.com/fmfn/
BayesianOptimization, accessed on 3 July 2021) was carried out. The difference between
the three hyper-parameter optimization was the kernel used. The first kernel used was the
Matérn (nu = 2.5, ` = 1.0), this was due to default setting of the Bayesian optimization
module, the results of this hyper-parameter optimization is shown in Table A1, and the
MSE and the average distance is shown in Table A2. The second kernel used was the
default setting of the Scikit-learn (https://scikit-learn.org/stable/, accessed on 3 July
2021) module, the RBF (` = 1.0). The last kernel tested was the RBF (` = 0.4). The
reason was to compare the results between different values of `. The results of the hyper-
parameter optimization is shown in Table A3, and the MSE and the average distance is
shown in Table A4. The values of MSE obtained with the second configuration was the
best (Table A5). As a consequence, the values calculated with this kernel was used for the
simulations, Tables 3 and 4.

https://github.com/MicaelaTenKathen/EGPPSO_ASV.git
https://github.com/fmfn/BayesianOptimization
https://github.com/fmfn/BayesianOptimization
https://scikit-learn.org/stable/
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Table A1. Hyper-parameter optimization using Matérn (nu = 2.5, ` = 1.0) as kernel.

Case c1 c2 c3 c4 ` λ

1 2.6971 0.6936 2.6694 2.9681 0.5589 0.1
2 2.5966 1.4761 2.9241 2.4693 1 0.1
3 1.2540 0.5788 0.1010 2.6108 0.4826 0.1109
4 3.0962 2.6647 2.3832 0.5391 0.6368 0.1
5 3.6672 0.3784 3.9466 3.7880 0.6724 0.1053
6 1.8240 2.7981 0 1.0480 0.4202 0.1
7 2.0687 1.7396 2.5661 1.2766 1 0.1
8 2.1811 1.2099 1.6372 1.7350 1 0.1
9 1.1649 0.7747 0.0306 2.7362 0.4 0.1

10 2.3295 1.4352 2.1793 1.8342 0.8791 0.1
All 3.4643 1.6279 0 0.9880 0.4 0.1

Table A2. Comparison of the MSE and the average distance using the values of Table A1.

Case Each Ground Truth All Ground Truths

MSE Average
Distance [m] MSE Average

Distance [m]

1 0.0062 17,048 0.0087 16,860
2 0.0075 17,919 0.0076 17,720
3 0.0123 17,934 0.0107 17,862
4 0.0111 17,063 0.0145 16,896
5 0.0176 17,647 0.0139 16,861
6 0.0037 16,382 0.0037 16,796
7 0.0071 17,042 0.0086 16,661
8 0.0080 17,274 0.0090 16,610
9 0.0042 16,942 0.0045 16,705
10 0.0025 17,281 0.0025 16,875

Table A3. Hyper-parameter optimization using RBF (` = 0.4) as kernel.

Case c1 c2 c3 c4 ` λ

1 2.5810 0.8581 3.3424 3.3720 0.4 0.1
2 1.9555 1.0462 2.6077 3.3304 1 0.1
3 2.2666 3.3180 0 1.0986 0.4 0.1
4 3.4534 2.8453 3.6083 1.7296 0.4 0.1
5 1.8751 2.7764 0 0.9860 0.4089 0.1
6 1.5753 2.7054 0 1.2312 0.6546 0.1
7 2.2777 0.4624 2.2728 3.3438 1 0.1
8 2.8131 0.8359 2.1828 2.4807 0.6501 0.1
9 0.2728 3.8949 0 3.5305 0.8892 0.1

10 1.9160 1.3901 1.5319 2.0815 0.5870 0.1
All 2.7575 1.9945 1.9899 2.6570 0.9813 0.1

It is important to mention that, in the Case 3 and the Case 5 of Table A1, the MSE
obtained using the best hyper-parameter values for these cases is higher than the MSE
obtained using the best hyper-parameter values for the whole group. The reason is that,
as it is an optimization problem, the function could get stuck in a local optimum. A
solution can be increased the number of iteration of the BO. In Table A5, the mean of the
MSE with its 95% confidence interval of the three hyper-parameter optimization is shown.
The calculations were made considering the MSE of all the cases shown in the Table 4,
Tables A2 and A4, from Case 1 to Case All. The results show that the BO with RBF (` = 1.0)
as kernel is the one with the best MSE, which is why it was used in this work.
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Table A4. Comparison of the MSE and the average distance using the values of Table A3.

Case Each Ground Truth All Ground Truths

MSE Average
Distance [m] MSE Average

Distance [m]

1 0.0062 17,053 0.0068 17,047
2 0.0074 17,920 0.0077 17,917
3 0.0107 17,730 0.0135 17,920
4 0.0108 17,157 0.0120 17,040
5 0.0138 16,860 0.0173 17,416
6 0.0038 16,081 0.0051 17,918
7 0.0074 17,048 0.0079 17,044
8 0.0080 17,348 0.0081 17,108
9 0.0042 16,905 0.0064 17,115
10 0.0027 17,306 0.0027 17,273

Table A5. MSE of the hyper-parameter optimization using different kernels.

Kernel MSE (Each Ground Truth) MSE (All Ground Truths)

Matérn (nu = 2.5, ` = 1.0) 0.0080 ± 0.0046 0.0084 ± 0.0040
RBF (` = 1.0) 0.0071 ± 0.0034 0.0081 ± 0.0040
RBF (` = 0.4) 0.0075 ± 0.0035 0.0088 ± 0.0043
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