189 research outputs found
Electron interaction with domain walls in antiferromagnetically coupled multilayers
For antiferromagnetically coupled Fe/Cr multilayers the low field
contribution to the resistivity, which is caused by the domain walls, is
strongly enhanced at low temperatures. The low temperature resistivity varies
according to a power law with the exponent about 0.7 to 1. This behavior can
not be explained assuming ballistic electron transport through the domain
walls. It is necessary to invoke the suppression of anti-localization effects
(positive quantum correction to conductivity) by the nonuniform gauge fields
caused by the domain walls.Comment: 5 pages with 3 figure
Direct observation of frozen moments in the NiFe/FeMn exchange bias system
We detect the presence of frozen magnetic moments in an exchange biased NiFe ferromagnet at the NiFe/FeMn ferromagnet/antiferromagnet interface by magnetic circular dichroism in x-ray absorption and resonant reflectivity experiments. Frozen moments are detected by means of the element-specific hysteresis loops. A weak dichroic absorption with unidirectional anisotropy can be linked to frozen magnetic moments in the ferromagnet. A more pronounced exchange bias for increasing the thickness of the FeMn layer correlates with an increase in orbital moment for interface Ni atoms carrying a frozen moment. These atoms compose about a single monolayer, but only a fraction of the atoms contributes by means of a strongly enhanced orbital moment to the macroscopic exchange bias phenomenon. The microscopic spin-orbit energy associated with these few interface frozen moment atoms appears to be sufficient to account for the macroscopic exchange bias energ
Direct observation of substitutional Ga after ion implantation in Ge by means of extended x-ray absorption fine structure
We present an experimental lattice location study of Ga atoms in Ge after ion implantation at elevated temperature (250°C). Using extended x-rayabsorption fine structure (EXAFS) experiments and a dedicated sample preparation method, we have studied the lattice location of Ga atoms in Ge with a concentration ranging from 0.5 at. % down to 0.005 at. %. At Ga concentrations ≤0.05 at.%, all Ga dopants are substitutional directly after ion implantation, without the need for post-implantation thermal annealing. At higher Ga concentrations, a reduction in the EXAFS amplitude is observed, indicating that a fraction of the Ga atoms is located in a defective environment. The local strain induced by the Ga atoms in the Ge matrix is independent of the Ga concentration and extends only to the first nearest neighbor Ge shell, where a 1% contraction in bond length has been measured, in agreement with density functional theory calculations.We acknowledge the support from the Research Foundation
Flanders, the epi-team from imec, the KU Leuven
GOA 09/06 project, the IUAP program P6/42 and the Australian
Research Council. S.C. acknowledges support from
OCAS NV by an OCAS-endowed chair at Ghent University
Direct observation of frozen moments in the NiFe/FeMn exchange bias system
We detect the presence of frozen magnetic moments in an exchange biased NiFe ferromagnet at the NiFe/FeMn ferromagnet/antiferromagnet interface by magnetic circular dichroism in x-ray absorption and resonant reflectivity experiments. Frozen moments are detected by means of the element-specific hysteresis loops. A weak dichroic absorption with unidirectional anisotropy can be linked to frozen magnetic moments in the ferromagnet. A more pronounced exchange bias for increasing the thickness of the FeMn layer correlates with an increase in orbital moment for interface Ni atoms carrying a frozen moment. These atoms compose about a single monolayer, but only a fraction of the atoms contributes by means of a strongly enhanced orbital moment to the macroscopic exchange bias phenomenon. The microscopic spin-orbit energy associated with these few interface frozen moment atoms appears to be sufficient to account for the macroscopic exchange bias energ
Tailoring Fe/Ag Superparamagnetic Composites by Multilayer Deposition
The magnetic properties of Fe/Ag granular multilayers were examined by SQUID
magnetization and Mossbauer spectroscopy measurements. Very thin (0.2 nm)
discontinuous Fe layers show superparamagnetic properties that can be tailored
by the thickness of both the magnetic and the spacer layers. The role of
magnetic interactions was studied in novel heterostructures of
superparamagnetic and ferromagnetic layers and the specific contribution of the
ferromagnetic layers to the low field magnetic susceptibility was identified.Comment: 5 pages and 3 figure
Development of an oximeter for neurology
Cerebral desaturation can occur during surgery manipulation, whereas otherparameters vary insignificantly. Prolonged intervals of cerebral anoxia can cause seriousdamage to the nervous system. Commonly used method for measurement of cerebral bloodflow uses invasive catheters. Other techniques include single photon emission computedtomography (SPECT), positron emission tomography (PET), magnetic resonance imaging(MRI). Tomographic methods frequently use isotope administration, that may result inanaphylactic reactions to contrast media and associated nerve diseases. Moreover, the high costand the need for continuous monitoring make it difficult to apply these techniques in clinicalpractice. Cerebral oximetry is a method for measuring oxygen saturation using infraredspectrometry. Moreover reflection pulse oximetry can detect sudden changes in sympathetictone. For this purpose the reflectance pulse oximeter for use in neurology is developed.Reflectance oximeter has a definite advantage as it can be used to measure oxygen saturation inany part of the body. Preliminary results indicate that the device has a good resolution and highreliability. Modern applied schematics have improved device characteristics compared withexisting ones
- …