207 research outputs found
The barocaloric effect: A Spin-off of the Discovery of High-Temperature Superconductivity
Some key results obtained in joint research projects with Alex M\"uller are
summarized, concentrating on the invention of the barocaloric effect and its
application for cooling as well as on important findings in the field of
high-temperature superconductivity resulting from neutron scattering
experiments.Comment: 26 pages, 9 figure
Resultado de aplicar aprendizaje inverso en disciplinas de grado
Este documento recoge los resultados de la experiencia de aplicar el Aprendizaje Inverso a estudiantes de 3º del Grado en Comercio por un lado y a otros estudiantes, muchos de ellos profesionales en el campo de la economía y la empresa, del Curso especial de Adaptación para titulados de antiguos planes de estudio.
El trabajo se ha centrado sobre “Estrategias de determinación de precios basadas en el valor para el cliente”, punto contenido en el Programa de la asignatura Gestión de Ventas y Proceso Comercial. Utilizando técnicas de investigación cualitativa tales como brainstornig y focus groupEconomía Financiera y ContabilidadOrganización de Empresas y Comercialización e Investigación de Mercados
Dynamical charge inhomogeneity and crystal-field fluctuations for 4f ions in high-Tc cuprates
The main relaxation mechanism of crystal-field excitations in rare-earth ions
in cuprates is believed to be provided by the fluctuations of crystalline
electric field induced by a dynamic charge inhomogeneity generic for the doped
cuprates. We address the generalized granular model as one of the model
scenario for such an ingomogeneity where the cuprate charge subsystem remind
that of Wigner crystal with the melting transition and phonon-like positional
excitation modes. Formal description of R-ion relaxation coincides with that of
recently suggested magnetoelastic mechanism.Comment: 4 page
Pseudogap behavior of nuclear spin relaxation in high Tc superconductors in terms of phase separation
We analyze anew experiments on the NMR in cuprates and find an important
information on their phase separation and its stripe character hidden in the
dependence of on degree of doping. In a broad class of materials
is the sum of two terms: the temperature independent one
attributed to ``incommensurate'' stripes that occur at external doping, and an
``universal'' temperature dependent term ascribed to moving metallic and AF
sub-phases. We argue that the frustrated first order phase transition in a
broad temperature interval bears a dynamical character.Comment: 5 pages, 3 figures; some comments and references added; accepted for
publication in JETP Letter
Pressure Studies on a High- Superconductor Pseudogap and Critical Temperatures
We report simultaneous hydrostatic pressure studies on the critical
temperature and on the pseudogap temperature performed through
resistivity measurements on an optimally doped high- oxide
. The resistivity is measured as
function of the temperature for several different applied pressure below 1GPa.
We find that both and increases linearly with the pressure. This
result demonstrate that the well known intrinsic pressure effect on is
also present at and both temperatures are originated by the same
superconducting mechanism.Comment: 4 pages and 2 figures in eps, final versio
Upper critical field for underdoped high-T_c superconductors. Pseudogap and stripe--phase
We investigate the upper critical field in a stripe--phase and in the
presence of a phenomenological pseudogap. Our results indicate that the
formation of stripes affects the Landau orbits and results in an enhancement of
. On the other hand, phenomenologically introduced pseudogap leads to a
reduction of the upper critical field. This effect is of particular importance
when the magnitude of the gap is of the order of the superconducting transition
temperature. We have found that a suppression of the upper critical field takes
place also for the gap that originates from the charge--density waves.Comment: 7 pages, 5 figure
A Trial of Early Antiretrovirals and Isoniazid Preventive Therapy in Africa
BACKGROUND: In sub-Saharan Africa, the burden of human immunodeficiency virus (HIV)-associated tuberculosis is high. We conducted a trial with a 2-by-2 factorial design to assess the benefits of early antiretroviral therapy (ART), 6-month isoniazid preventive therapy (IPT), or both among HIV-infected adults with high CD4+ cell counts in Ivory Coast. METHODS: We included participants who had HIV type 1 infection and a CD4+ count of less than 800 cells per cubic millimeter and who met no criteria for starting ART according to World Health Organization (WHO) guidelines. Participants were randomly assigned to one of four treatment groups: deferred ART (ART initiation according to WHO criteria), deferred ART plus IPT, early ART (immediate ART initiation), or early ART plus IPT. The primary end point was a composite of diseases included in the case definition of the acquired immunodeficiency syndrome (AIDS), non-AIDS-defining cancer, non-AIDS-defining invasive bacterial disease, or death from any cause at 30 months. We used Cox proportional models to compare outcomes between the deferred-ART and early-ART strategies and between the IPT and no-IPT strategies. RESULTS: A total of 2056 patients (41% with a baseline CD4+ count of ≥500 cells per cubic millimeter) were followed for 4757 patient-years. A total of 204 primary end-point events were observed (3.8 events per 100 person-years; 95% confidence interval [CI], 3.3 to 4.4), including 68 in patients with a baseline CD4+ count of at least 500 cells per cubic millimeter (3.2 events per 100 person-years; 95% CI, 2.4 to 4.0). Tuberculosis and invasive bacterial diseases accounted for 42% and 27% of primary end-point events, respectively. The risk of death or severe HIV-related illness was lower with early ART than with deferred ART (adjusted hazard ratio, 0.56; 95% CI, 0.41 to 0.76; adjusted hazard ratio among patients with a baseline CD4+ count of ≥500 cells per cubic millimeter, 0.56; 95% CI, 0.33 to 0.94) and lower with IPT than with no IPT (adjusted hazard ratio, 0.65; 95% CI, 0.48 to 0.88; adjusted hazard ratio among patients with a baseline CD4+ count of ≥500 cells per cubic millimeter, 0.61; 95% CI, 0.36 to 1.01). The 30-month probability of grade 3 or 4 adverse events did not differ significantly among the strategies. CONCLUSIONS: In this African country, immediate ART and 6 months of IPT independently led to lower rates of severe illness than did deferred ART and no IPT, both overall and among patients with CD4+ counts of at least 500 cells per cubic millimeter. (Funded by the French National Agency for Research on AIDS and Viral Hepatitis; TEMPRANO ANRS 12136 ClinicalTrials.gov number, NCT00495651.)
A Theory for High- Superconductors Considering Inhomogeneous Charge Distribution
We propose a general theory for the critical and pseudogap
temperature dependence on the doping concentration for high- oxides,
taking into account the charge inhomogeneities in the planes. The well
measured experimental inhomogeneous charge density in a given compound is
assumed to produce a spatial distribution of local . These differences
in the local charge concentration is assumed to yield insulator and metallic
regions, possibly in a stripe morphology. In the metallic region, the
inhomogeneous charge density yields also spatial distributions of
superconducting critical temperatures and zero temperature gap
. For a given sample, the measured onset of vanishing gap
temperature is identified as the pseudogap temperature, that is, , which
is the maximum of all . Below , due to the distribution of
's, there are some superconducting regions surrounded by insulator or
metallic medium. The transition to a superconducting state corresponds to the
percolation threshold among the superconducting regions with different
's. To model the charge inhomogeneities we use a double branched
Poisson-Gaussian distribution. To make definite calculations and compare with
the experimental results, we derive phase diagrams for the BSCO, LSCO and YBCO
families, with a mean field theory for superconductivity using an extended
Hubbard Hamiltonian. We show also that this novel approach provides new
insights on several experimental features of high- oxides.Comment: 7 pages, 5 eps figures, corrected typo
Stripes, Vibrations and Superconductivity
We propose a model of a spatially modulated collective charge state of
superconducting cuprates. The regions of higher carrier density (stripes) are
described in terms of Luttinger liquids and the regions of lower density as a
two-dimensional interacting bosonic gas of d_{x^2-y^2} hole pairs. The
interactions among the elementary excitations are repulsive and the transition
to the superconducting state is driven by decay processes. Vibrations of the
CCS and the lattice, although not participating directly in the binding
mechanism, are fundamental for superconductivity. The superfluid density and
the lattice have a strong tendency to modulation implying a still unobserved
dimerized stripe phase in cuprates. The phase diagram of the model has a
crossover from 1D to 2D behavior and a pseudogap region where the amplitude of
the order parameters are finite but phase coherence is not established. We
discuss the nature of the spin fluctuations and the unusual isotope effect
within the model.Comment: 51 pages, 20 figures. Post-March Meeting version: New references are
added, some of the typos are corrected, and a few new discussions are
include
- …