63 research outputs found

    Low‐Fe(III) Greenalite Was a Primary Mineral From Neoarchean Oceans

    Full text link
    Banded iron formations (BIFs) represent chemical precipitation from Earth’s early oceans and therefore contain insights into ancient marine biogeochemistry. However, BIFs have undergone multiple episodes of alteration, making it difficult to assess the primary mineral assemblage. Nanoscale mineral inclusions from 2.5 billion year old BIFs and ferruginous cherts provide new evidence that iron silicates were primary minerals deposited from the Neoarchean ocean, contrasting sharply with current models for BIF inception. Here we used multiscale imaging and spectroscopic techniques to characterize the best preserved examples of these inclusions. Our integrated results demonstrate that these early minerals were low‐Fe(III) greenalite. We present potential pathways in which low‐Fe(III) greenalite could have formed through changes in saturation state and/or iron oxidation and reduction. Future constraints for ancient ocean chemistry and early life’s activities should include low‐Fe(III) greenalite as a primary mineral in the Neoarchean ocean.Plain Language SummaryChemical precipitates from Earth’s early oceans hold clues to ancient seawater chemistry and biological activities, but we first need to understand what the original minerals were in ancient marine deposits. We characterized nanoscale mineral inclusions from 2.5 billion year old banded iron formations and determined that the primary minerals were iron‐rich silicate minerals dominated by reduced iron, challenging current hypotheses for banded iron formation centered on iron oxides. Our results suggest that our planet at this time had a very reducing ocean and further enable us to present several biogeochemical mineral formation hypotheses that can now be tested to better understand the activities of early life on ancient Earth.Key PointsNeoarchean nanoparticle silicate inclusions appear to be the earliest iron mineral preserved in cherts from Australia and South AfricaOur multiscale analyses indicate that the particles are greenalite that are dominantly Fe(II) with have low and variable Fe(III) contentWe present four (bio)geochemical hypotheses that could produce low‐Fe(III) greenalitePeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143747/1/grl57046_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143747/2/grl57046.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143747/3/grl57046-sup-0001-2017GL076311-SI.pd

    Hydrogen generation and iron partitioning during experimental serpentinization of an olivine-pyroxene mixture

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in McCollom, T. M., Klein, F., Moskowitz, B., Berquo, T. S., Bach, W., & Templeton, A. S. Hydrogen generation and iron partitioning during experimental serpentinization of an olivine-pyroxene mixture. Geochimica Et Cosmochimica Acta, 282, (2020): 55-75, doi:10.1016/j.gca.2020.05.016.A series of laboratory experiments was conducted to investigate serpentinization of olivine–pyroxene mixtures at 230 °C, with the objective of evaluating the effect of mixed compositions on Fe partitioning among product minerals, H2 generation, and reaction rates. An initial experiment reacted a mixture of 86 wt.% olivine and 14 wt.% orthopyroxene (Opx) with the same initial grain size for 387 days. The experiment resulted in extensive reaction (∼53% conversion), and solids recovered at termination of the experiment were dominated by Fe-bearing chrysotile and relict olivine along with minor brucite and magnetite. Only limited amounts of H2 were generated during the first ∼100 days of the experiment, but the rate of H2 generation then increased sharply coincident with an increase in pH from mildly alkaline to strongly alkaline conditions. Two shorter term experiments with the same reactants (26 and 113 days) produced a mixture of lizardite and talc that formed a thin coating on relict olivine and Opx grains, with virtually no generation of H2. Comparison of the results with reaction path models indicates that the Opx reacted about two times faster than olivine, which contrasts with some previous studies that suggested olivine should react more rapidly than Opx at the experimental conditions. The models also indicate that the long-term experiment transitioned from producing serpentine ± talc early in the early stages to precipitation of serpentine plus magnetite, with brucite beginning to precipitate only late in the experiment as Opx was depleted. The results indicate that overall reaction of olivine and Opx was initially relatively slow, but reaction rates accelerated substantially when the pH transitioned to strongly alkaline conditions. Serpentine and brucite precipitated from the olivine-Opx mixture had higher Fe contents than observed in olivine-only experiments at mildly alkaline pH, but had comparable Fe contents to reaction of olivine at strongly alkaline pH implying that higher pH may favor greater partitioning of Fe into serpentine and brucite and less into magnetite. Despite the presence of brucite, dissolved silica activities during the long-term olivine-Opx experiment maintained levels well above serpentine-brucite equilibrium. Instead, silica activities converged on levels close to metastable equilibrium between brucite and olivine. It is proposed that silica levels during the experiment may have been regulated by exchange of SiO2 between the fluid and a silica-depleted, brucite-like surface layer on dissolving olivine.This research was supported by the U. S. National Science Foundation Marine Geology and Geophysics program through grant NSF-OCE 0927744 and by the NASA Astrobiology Institute through Cooperative Agreement NNA15BB02A. Additional support to TMM from the Hanse Wissenschaftskolleg (Delmenhorst, Germany) at an early stage of this project is gratefully acknowledged. FK acknowledges support through Grant NSF-OCE 1427274. The IRM is supported by the Instruments and Facilities Program of the NSF Division of Earth Science. This is IRM contribution 1711. We very much appreciate the comments of Fabrice Brunet, Gleb Pokrovski and an anonymous reviewer that helped us refine our interpretations and improve communication of the results

    Mineralogy of Iron Microbial Mats from Loihi Seamount

    Get PDF
    Extensive mats of Fe oxyhydroxides and associated Fe-oxidizing microbial organisms form in diverse geochemical settings – freshwater seeps to deep-sea vents – where ever opposing Fe(II)-oxygen gradients prevail. The mineralogy, reactivity, and structural transformations of Fe oxyhydroxides precipitated from submarine hydrothermal fluids within microbial mats remains elusive in active and fossil systems. In response, a study of Fe microbial mat formation at the Loihi Seamount was conducted to describe the physical and chemical characteristics of Fe-phases using extended X-ray absorption fine structure spectroscopy, powder X-ray diffraction, synchrotron radiation X-ray total scattering, low-temperature magnetic measurements, and Mössbauer spectroscopy. Particle sizes of 3.5–4.6 nm were estimated from magnetism data, and coherent scattering domain (CSD) sizes as small as 1.6 nm are indicated by pair distribution function (PDF) analysis. Disorder in the nanostructured Fe-bearing phases results in limited intermediate-range structural order: less than that of standard two-line ferrihydrite (Fh), except for the Pohaku site. The short-range ordered natural Fh (FhSRO) phases were stable at 4°C in the presence of oxygen for at least 1 year and during 400°C treatment. The observed stability of the FhSRO is consistent with magnetic observations that point to non-interacting nanoparticles. PDF analyses of total scattering data provide further evidence for FhSRO particles with a poorly ordered silica coating. The presence of coated particles explains the small CSD for the mat minerals, as well as the stability of the minerals over time and against heating. The mineral properties observed here provide a starting point from which progressively older and more extensively altered Fe deposits may be examined, with the ultimate goal of improved interpretation of past biogeochemical conditions and diagenetic processes

    THE STRUCTURE AND HYDRATION OF THE HUMITE MINERALS

    Get PDF
    The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned disciple. iii Hirner, Sarah Marie (M.S., Geology, Department of Geological Sciences) The structure and hydration of the humite minerals Thesis directed by Professor Joseph R. Smyth The entire water budget of the mantle may be dominated by nominally anhydrous minerals. The local structural environment of H in the humite minerals could provide a valuable model for the incorporation of H into olivine due to their structural similarities. It also thought that humites may play a significant role in the transport of water into the mantle. Four crystals of chondrodite, clinohumite, norbergite, and humite, both natural and synthetic, have been analyzed via Raman spectroscopy and electron microprobe analysis. Their structures have been refined by single-crystal X-ray diffraction analysis. The new data confirms earlier studies of cation ordering and hydration geometry, and adds new insight into the crystal chemistry of the humite minerals, particularly the geometry of the H position. In humite, hydrogen was found to occupy the H1 site. iv ACKMOWLEDGEMENTS This research was supported in part by National Science Foundation grants to Joseph R. Smyth

    Low-Temperature Sulfidic-Ice Microbial Communities, Borup Fiord Pass, Canadian High Arctic

    Get PDF
    A sulfur-dominated supraglacial spring system found at Borup Fiord Pass (BFP), Ellesmere Island, Nunavut, Canada, is a unique sulfur-on-ice system expressed along the toe of a glacier. BFP has an intermittent flowing, subsurface-derived, glacial spring that creates a large white-yellow icing (aufeis) that extends down-valley. Over field campaigns in 2014, 2016, and 2017, numerous samples were collected and analyzed for both microbial community composition and aqueous geochemistry. Samples were collected from multiple site types: spring discharge fluid, aufeis (spring-derived ice), melt pools with sedimented cryoconite material, and mineral precipitate scrapings, to probe how microbial communities differed between site types in a dynamic freeze/thaw sulfur-rich system. Dissolved sulfate varied between 0.07 and 11.6 mM and was correlated with chloride concentrations, where the fluids were saltiest among spring fluids. The highest sulfate samples exhibited high dissolved sulfide values between 0.22 and 2.25 mM. 16S rRNA gene sequencing from melt pool and aufeis samples from the 2014 campaign were highly abundant in operational taxonomic units (OTUs) closely related to sulfur-oxidizing microorganisms (SOM; Sulfurimonas, Sulfurovum, and Sulfuricurvum). Subsequent sampling 2 weeks later had fewer SOMs and showed an increased abundance of the genus Flavobacterium. Desulfocapsa, an organism that specializes in the disproportionation of inorganic sulfur compounds was also found. Samples from 2016 and 2017 revealed that microorganisms present were highly similar in community composition to 2014 samples, primarily echoed by the continued presence of Flavobacterium sp. Results suggest that while there may be acute events where sulfur cycling organisms dominate, a basal community structure appears to dominate over time and site type. These results further enhance our knowledge of low-temperature sulfur systems on Earth, and help to guide the search for potential life on extraterrestrial worlds, such as Europa, where similar low-temperature sulfur-rich conditions may exist

    Parapatric speciation of Meiothermus in serpentinite-hosted aquifers in Oman

    Get PDF
    The factors that control the distribution and evolution of microbial life in subsurface environments remain enigmatic due to challenges associated with sampling fluids from discrete depth intervals via boreholes while avoiding mixing of fluids. Here, using an inflatable packer system, fracture waters were isolated and collected from three discrete depth intervals spanning >130 m in a borehole intersecting an ultramafic rock formation undergoing serpentinization in the Samail Ophiolite, Sultanate of Oman. Near surface aquifer waters were moderately reducing and had alkaline pH while deeper aquifer waters were reduced and had hyperalkaline pH, indicating extensive influence by serpentinization. Metagenomic sequencing and analysis of DNA from filtered biomass collected from discrete depth intervals revealed an abundance of aerobes in near surface waters and a greater proportion of anaerobes at depth. Yet the abundance of the putatively obligate aerobe, Meiothermus, increased with depth, providing an opportunity to evaluate the influence of chemical and spatial variation on its distribution and speciation. Two clades of Meiothermus metagenome assembled genomes (MAGs) were identified that correspond to surface and deep populations termed Types I (S) and II (D), respectively; both clades comprised an apparently Oman-specific lineage indicating a common ancestor. Type II (D) clade MAGs encoded fewer genes and were undergoing slower genome replication as inferred from read mapping. Further, single nucleotide variants (SNVs) and mobile genetic elements identified among MAGs revealed detectable, albeit limited, evidence for gene flow/recombination between spatially segregated Type I (S) and Type II (D) populations. Together, these observations indicate that chemical variation generated by serpentinization, combined with physical barriers that reduce/limit dispersal and gene flow, allowed for the parapatric speciation of Meiothermus in the Samail Ophiolite or a geologic precursor. Further, Meiothermus genomic data suggest that deep and shallow aquifer fluids in the Samail Ophiolite may mix over shorter time scales than has been previously estimated from geochemical data

    Intact polar lipidome and membrane adaptations of microbial communities inhabiting serpentinite-hosted fluids

    Get PDF
    The generation of hydrogen and reduced carbon compounds during serpentinization provides sustained energy for microorganisms on Earth, and possibly on other extraterrestrial bodies (e.g., Mars, icy satellites). However, the geochemical conditions that arise from water-rock reaction also challenge the known limits of microbial physiology, such as hyperalkaline pH, limited electron acceptors and inorganic carbon. Because cell membranes act as a primary barrier between a cell and its environment, lipids are a vital component in microbial acclimation to challenging physicochemical conditions. To probe the diversity of cell membrane lipids produced in serpentinizing settings and identify membrane adaptations to this environment, we conducted the first comprehensive intact polar lipid (IPL) biomarker survey of microbial communities inhabiting the subsurface at a terrestrial site of serpentinization. We used an expansive, custom environmental lipid database that expands the application of targeted and untargeted lipodomics in the study of microbial and biogeochemical processes. IPLs extracted from serpentinite-hosted fluid communities were comprised of >90% isoprenoidal and non-isoprenoidal diether glycolipids likely produced by archaeal methanogens and sulfate-reducing bacteria. Phospholipids only constituted ~1% of the intact polar lipidome. In addition to abundant diether glycolipids, betaine and trimethylated-ornithine aminolipids and glycosphingolipids were also detected, indicating pervasive membrane modifications in response to phosphate limitation. The carbon oxidation state of IPL backbones was positively correlated with the reduction potential of fluids, which may signify an energy conservation strategy for lipid synthesis. Together, these data suggest microorganisms inhabiting serpentinites possess a unique combination of membrane adaptations that allow for their survival in polyextreme environments. The persistence of IPLs in fluids beyond the presence of their source organisms, as indicated by 16S rRNA genes and transcripts, is promising for the detection of extinct life in serpentinizing settings through lipid biomarker signatures. These data contribute new insights into the complexity of lipid structures generated in actively serpentinizing environments and provide valuable context to aid in the reconstruction of past microbial activity from fossil lipid records of terrestrial serpentinites and the search for biosignatures elsewhere in our solar system
    corecore