382 research outputs found
The structure of the hard sphere solid
We show that near densest-packing the perturbations of the HCP structure
yield higher entropy than perturbations of any other densest packing. The
difference between the various structures shows up in the correlations between
motions of nearest neighbors. In the HCP structure random motion of each sphere
impinges slightly less on the motion of its nearest neighbors than in the other
structures.Comment: For related papers see:
http://www.ma.utexas.edu/users/radin/papers.htm
The Pfaffian solution of a dimer-monomer problem: Single monomer on the boundary
We consider the dimer-monomer problem for the rectangular lattice. By mapping
the problem into one of close-packed dimers on an extended lattice, we rederive
the Tzeng-Wu solution for a single monomer on the boundary by evaluating a
Pfaffian. We also clarify the mathematical content of the Tzeng-Wu solution by
identifying it as the product of the nonzero eigenvalues of the Kasteleyn
matrix.Comment: 4 Pages to appear in the Physical Review E (2006
Logarithmic corrections in the free energy of monomer-dimer model on plane lattices with free boundaries
Using exact computations we study the classical hard-core monomer-dimer
models on m x n plane lattice strips with free boundaries. For an arbitrary
number v of monomers (or vacancies), we found a logarithmic correction term in
the finite-size correction of the free energy. The coefficient of the
logarithmic correction term depends on the number of monomers present (v) and
the parity of the width n of the lattice strip: the coefficient equals to v
when n is odd, and v/2 when n is even. The results are generalizations of the
previous results for a single monomer in an otherwise fully packed lattice of
dimers.Comment: 4 pages, 2 figure
Some Exact Results for Spanning Trees on Lattices
For -vertex, -dimensional lattices with , the number
of spanning trees grows asymptotically as
in the thermodynamic limit. We present an exact closed-form result for the
asymptotic growth constant for spanning trees on the
-dimensional body-centered cubic lattice. We also give an exact integral
expression for on the face-centered cubic lattice and an exact
closed-form expression for on the lattice.Comment: 7 pages, 1 tabl
Generation of folk song melodies using Bayes transforms
The paper introduces the `Bayes transform', a mathematical procedure for putting data into a hierarchical representation. Applicable to any type of data, the procedure yields interesting results when applied to sequences. In this case, the representation obtained implicitly models the repetition hierarchy of the source. There are then natural applications to music. Derivation of Bayes transforms can be the means of determining the repetition hierarchy of note sequences (melodies) in an empirical and domain-general way. The paper investigates application of this approach to Folk Song, examining the results that can be obtained by treating such transforms as generative models
Vacancy localization in the square dimer model
We study the classical dimer model on a square lattice with a single vacancy
by developing a graph-theoretic classification of the set of all configurations
which extends the spanning tree formulation of close-packed dimers. With this
formalism, we can address the question of the possible motion of the vacancy
induced by dimer slidings. We find a probability 57/4-10Sqrt[2] for the vacancy
to be strictly jammed in an infinite system. More generally, the size
distribution of the domain accessible to the vacancy is characterized by a
power law decay with exponent 9/8. On a finite system, the probability that a
vacancy in the bulk can reach the boundary falls off as a power law of the
system size with exponent 1/4. The resultant weak localization of vacancies
still allows for unbounded diffusion, characterized by a diffusion exponent
that we relate to that of diffusion on spanning trees. We also implement
numerical simulations of the model with both free and periodic boundary
conditions.Comment: 35 pages, 24 figures. Improved version with one added figure (figure
9), a shift s->s+1 in the definition of the tree size, and minor correction
Tetromino tilings and the Tutte polynomial
We consider tiling rectangles of size 4m x 4n by T-shaped tetrominoes. Each
tile is assigned a weight that depends on its orientation and position on the
lattice. For a particular choice of the weights, the generating function of
tilings is shown to be the evaluation of the multivariate Tutte polynomial
Z\_G(Q,v) (known also to physicists as the partition function of the Q-state
Potts model) on an (m-1) x (n-1) rectangle G, where the parameter Q and the
edge weights v can take arbitrary values depending on the tile weights.Comment: 8 pages, 6 figure
The duality relation between Glauber dynamics and the diffusion-annihilation model as a similarity transformation
In this paper we address the relationship between zero temperature Glauber
dynamics and the diffusion-annihilation problem in the free fermion case. We
show that the well-known duality transformation between the two problems can be
formulated as a similarity transformation if one uses appropriate (toroidal)
boundary conditions. This allow us to establish and clarify the precise nature
of the relationship between the two models. In this way we obtain a one-to-one
correspondence between observables and initial states in the two problems. A
random initial state in Glauber dynamics is related to a short range correlated
state in the annihilation problem. In particular the long-time behaviour of the
density in this state is seen to depend on the initial conditions. Hence, we
show that the presence of correlations in the initial state determine the
dependence of the long time behaviour of the density on the initial conditions,
even if such correlations are short-ranged. We also apply a field-theoretical
method to the calculation of multi-time correlation functions in this initial
state.Comment: 15 pages, Latex file, no figures. To be published in J. Phys. A.
Minor changes were made to the previous version to conform with the referee's
Repor
Exact solution of A-D Temperley-Lieb Models
We solve for the spectrum of quantum spin chains based on representations of
the Temperley-Lieb algebra associated with the quantum groups {\cal U}_q(X_n }
for X_n = A_1,B_n,C_nD_n$. We employ a generalization of the coordinate
Bethe-Ansatz developed previously for the deformed biquadratic spin one chain.
As expected, all these models have equivalent spectra, i.e. they differ only in
the degeneracy of their eigenvalues. This is true for finite length and open
boundary conditions. For periodic boundary conditions the spectra of the lower
dimensional representations are containded entirely in the higher dimensional
ones. The Bethe states are highest weight states of the quantum group, except
for some states with energy zero
On the duality relation for correlation functions of the Potts model
We prove a recent conjecture on the duality relation for correlation
functions of the Potts model for boundary spins of a planar lattice.
Specifically, we deduce the explicit expression for the duality of the n-site
correlation functions, and establish sum rule identities in the form of the
M\"obius inversion of a partially ordered set. The strategy of the proof is by
first formulating the problem for the more general chiral Potts model. The
extension of our consideration to the many-component Potts models is also
given.Comment: 17 pages in RevTex, 5 figures, submitted to J. Phys.
- …