279 research outputs found
Stochastic Differential Games and Energy-Efficient Power Control
One of the contributions of this work is to formulate the problem of
energy-efficient power control in multiple access channels (namely, channels
which comprise several transmitters and one receiver) as a stochastic
differential game. The players are the transmitters who adapt their power level
to the quality of their time-varying link with the receiver, their battery
level, and the strategy updates of the others. The proposed model not only
allows one to take into account long-term strategic interactions but also
long-term energy constraints. A simple sufficient condition for the existence
of a Nash equilibrium in this game is provided and shown to be verified in a
typical scenario. As the uniqueness and determination of equilibria are
difficult issues in general, especially when the number of players goes large,
we move to two special cases: the single player case which gives us some useful
insights of practical interest and allows one to make connections with the case
of large number of players. The latter case is treated with a mean-field game
approach for which reasonable sufficient conditions for convergence and
uniqueness are provided. Remarkably, this recent approach for large system
analysis shows how scalability can be dealt with in large games and only relies
on the individual state information assumption.Comment: The final publication is available at
http://www.springerlink.com/openurl.asp?genre=article\&id=doi:10.1007/s13235-012-0068-
- …