31 research outputs found

    The observation and evaluation of extensional filament deformation and breakup profiles for Non Newtonian fluids using a high strain rate double piston apparatus

    Get PDF
    This paper reports a new design of experimental double piston filament stretching apparatus that can stretch fluids to very high extensional strain rates. Using high speed photography, filament deformation and breakup profiles of a strategically selected range of fluids including low and higher viscosity Newtonian liquids together with a viscoelastic polymer solution, biological and yield stress fluids were tested for the first time at extensional strain rates in excess of 1000 s−1. The stretching rate was sufficiently high that observation of low viscosity Newtonian fluid stretching, end pinching and break was observed during the stretching period of the deformation, whereas for a higher Newtonian viscosity, filament thinning and breakup occurred after the cessation of piston movement. Different fluid rheologies resulted in very different thinning and breakup profiles and the kinetics, in particular of yield stress fluids showed a striking contrast to Newtonians or viscoelastic fluids. Surprisingly all the tested fluids had an initial sub millisecond “wine glass” profile of deformation which could be approximately captured using a simple parabolic mass balance equation. Subsequent deformation profiles were however very sensitive to the rheology of the test fluid and where the final breakup occurred before or after piston cessation. In certain cases the thinning and break up was successfully matched with a 1D numerical simulation demonstrating the way numerical modelling can be used with the fluids correct rheological characterization to gain physical insight into how rheologically complex fluids deform and breakup at very high extensional deformation rates.</p

    The unique resistance and resilience of the Nigerian West African Dwarf goat to gastrointestinal nematode infections

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>West African Dwarf (WAD) goats serve an important role in the rural village economy of West Africa, especially among small-holder livestock owners. They have been shown to be trypanotolerant and to resist infections with <it>Haemonchus contortus </it>more effectively than any other known breed of goat.</p> <p>Methods</p> <p>In this paper we review what is known about the origins of this goat breed, explain its economic importance in rural West Africa and review the current status of our knowledge about its ability to resist parasitic infections.</p> <p>Conclusions</p> <p>We suggest that its unique capacity to show both trypanotolerance and resistance to gastrointestinal (GI) nematode infections is immunologically based and genetically endowed, and that knowledge of the underlying genes could be exploited to improve the capacity of more productive wool and milk producing, but GI nematode susceptible, breeds of goats to resist infection, without recourse to anthelmintics. Either conventional breeding allowing introgression of resistance alleles into susceptible breeds, or transgenesis could be exploited for this purpose. Appropriate legal protection of the resistance alleles of WAD goats might provide a much needed source of revenue for the countries in West Africa where the WAD goats exist and where currently living standards among rural populations are among the lowest in the world.</p

    The Effect of Heat Transfer and Polymer Concentration on Non-Newtonian Fluid from Pore-Scale Simulation of Rock X-ray Micro-CT

    No full text
    Most of the pore-scale imaging and simulations of non-Newtonian fluid are based on the simplifying geometry of network modeling and overlook the fluid rheology and heat transfer. In the present paper, we developed a non-isothermal and non-Newtonian numerical model of the flow properties at pore-scale by simulation of the 3D micro-CT images using a Finite Volume Method (FVM). The numerical model is based on the resolution of the momentum and energy conservation equations. Owing to an adaptive mesh generation technique and appropriate boundary conditions, rock permeability and mobility are accurately computed. A temperature and concentration-dependent power-law viscosity model in line with the experimental measurement of the fluid rheology is adopted. The model is first applied at isothermal condition to 2 benchmark samples, namely Fontainebleau sandstone and Grosmont carbonate, and is found to be in good agreement with the Lattice Boltzmann method (LBM). Finally, at non-isothermal conditions, an effective mobility is introduced that enables to perform a numerical sensitivity study to fluid rheology, heat transfer, and operating conditions. While the mobility seems to evolve linearly with polymer concentration in agreement with a derived theoretical model, the effect of the temperature seems negligible by comparison. However, a sharp contrast is found between carbonate and sandstone under the effect of a constant temperature gradient. Besides concerning the flow index and consistency factor, a master curve is derived when normalizing the mobility for both the carbonate and the sandstone
    corecore