16 research outputs found

    Spectral matching techniques (SMTs) and automated cropland classification algorithms (ACCAs) for mapping croplands of Australia using MODIS 250-m time-series (2000–2015) data

    Get PDF
    Mapping croplands, including fallow areas, are an important measure to determine the quantity of food that is produced, where they are produced, and when they are produced (e.g. seasonality). Furthermore, croplands are known as water guzzlers by consuming anywhere between 70% and 90% of all human water use globally. Given these facts and the increase in global population to nearly 10 billion by the year 2050, the need for routine, rapid, and automated cropland mapping year-after-year and/or season-after-season is of great importance. The overarching goal of this study was to generate standard and routine cropland products, year-after-year, over very large areas through the use of two novel methods: (a) quantitative spectral matching techniques (QSMTs) applied at continental level and (b) rule-based Automated Cropland Classification Algorithm (ACCA) with the ability to hind-cast, now-cast, and future-cast. Australia was chosen for the study given its extensive croplands, rich history of agriculture, and yet nonexistent routine yearly generated cropland products using multi-temporal remote sensing. This research produced three distinct cropland products using Moderate Resolution Imaging Spectroradiometer (MODIS) 250-m normalized difference vegetation index 16-day composite time-series data for 16 years: 2000 through 2015. The products consisted of: (1) cropland extent/areas versus cropland fallow areas, (2) irrigated versus rainfed croplands, and (3) cropping intensities: single, double, and continuous cropping. An accurate reference cropland product (RCP) for the year 2014 (RCP2014) produced using QSMT was used as a knowledge base to train and develop the ACCA algorithm that was then applied to the MODIS time-series data for the years 2000–2015. A comparison between the ACCA-derived cropland products (ACPs) for the year 2014 (ACP2014) versus RCP2014 provided an overall agreement of 89.4% (kappa = 0.814) with six classes: (a) producer’s accuracies varying between 72% and 90% and (b) user’s accuracies varying between 79% and 90%. ACPs for the individual years 2000–2013 and 2015 (ACP2000–ACP2013, ACP2015) showed very strong similarities with several other studies. The extent and vigor of the Australian croplands versus cropland fallows were accurately captured by the ACCA algorithm for the years 2000–2015, thus highlighting the value of the study in food security analysis. The ACCA algorithm and the cropland products are released through http://croplands.org/app/map and http://geography.wr.usgs.gov/science/croplands/algorithms/australia_250m.htm

    Mapping Flooded Rice Paddies Using Time Series of MODIS Imagery in the Krishna River Basin, India

    No full text
    Rice is one of the major crops cultivated predominantly in flooded paddies, thus a large amount of water is consumed during its growing season. Accurate paddy rice maps are therefore important inputs for improved estimates of actual evapotranspiration in the agricultural landscape. The main objective of this study was to obtain flooded paddy rice maps using multi-temporal images of Moderate Resolution Imaging Spectroradiometer (MODIS) in the Krishna River Basin, India. First, ground-based spectral samples collected by a field spectroradiometer, CROPSCAN, were used to demonstrate unique contrasts between the Normalized Difference Vegetation Index (NDVI) and the Land Surface Water Index (LSWI) observed during the transplanting season of rice. The contrast between Enhanced Vegetation Index (EVI) and Land Surface Water Index (LSWI) from MODIS time series data was then used to generate classification decision rules to map flooded rice paddies, for the transplanting seasons of Kharif and Rabi rice crops in the Krishna River Basin. Consistent with ground spectral observations, the relationship of the MODIS EVI vs. LSWI of paddy rice fields showed distinct features from other crops during the transplanting seasons. The MODIS-derived maps were validated against extensive reference data collected from multiple land use field surveys. The accuracy of the paddy rice maps, when determined using field plot data, was approximately 78%. The MODIS-derived rice crop areas were also compared with the areas reported by Department of Agriculture (DOA), Government of India (Government Statistics). The estimated root mean square difference (RMSD) of rice area estimated using MODIS and those reported by the Department of Agriculture over 10 districts varied between 3.4% and 6.6% during 10 years of our study period. Some of the major factors responsible for this difference include high noise of the MODIS images during the prolonged monsoon seasons (typically June–October) and the coarse spatial resolution (500 m) of the MODIS images compared to the small crop fields in the basin. However, this study demonstrates, based on multi-year analysis, that MODIS images can still provide robust and consistent flooded paddy rice extent and areas over a highly heterogeneous large river basin

    Multiple agricultural cropland products of South Asia developed using Landsat-8 30 m and MODIS 250 m data using machine learning on the Google Earth Engine (GEE) cloud and spectral matching techniques (SMTs) in support of food and water security

    Get PDF
    Cropland products are of great importance in water and food security assessments, especially in South Asia, which is home to nearly 2 billion people and 230 million hectares of net cropland area. In South Asia, croplands account for about 90% of all human water use. Cropland extent, cropping intensity, crop watering methods, and crop types are important factors that have a bearing on the quantity, quality, and location of production. Currently, cropland products are produced using mainly coarse-resolution (250–1000 m) remote sensing data. As multiple cropland products are needed to address food and water security challenges, our study was aimed at producing three distinct products that would be useful overall in South Asia. The first of these, Product 1, was meant to assess irrigated versus rainfed croplands in South Asia using Landsat 30 m data on the Google Earth Engine (GEE) platform. The second, Product 2, was tailored for major crop types using Moderate Resolution Imaging Spectroradiometer (MODIS) 250 m data. The third, Product 3, was designed for cropping intensity (single, double, and triple cropping) using MODIS 250 m data. For the kharif season (the main cropping season in South Asia, Jun–Oct), 10 major crops (5 irrigated crops: rice, soybean, maize, sugarcane, cotton; and 5 rainfed crops: pulses, rice, sorghum, millet, groundnut) were mapped. For the rabi season (post-rainy season, Nov–Feb), five major crops (three irrigated crops: rice, wheat, maize; and two rainfed crops: chickpea, pulses) were mapped. The irrigated versus rainfed 30 m product showed an overall accuracy of 79.8% with the irrigated cropland class providing a producer’s accuracy of 79% and the rainfed cropland class 74%. The overall accuracy demonstrated by the cropping intensity product was 85.3% with the producer’s accuracies of 88%, 85%, and 67% for single, double, and triple cropping, respectively. Crop types were mapped to accuracy levels ranging from 72% to 97%. A comparison of the crop-type area statistics with national statistics explained 63–98% variability. The study produced multiple-cropland products that are crucial for food and water security assessments, modeling, mapping, and monitoring using multiple-satellite sensor big-data, and Random Forest (RF) machine learning algorithms by coding, processing, and computing on the GEE cloud

    A meta-analysis of global crop water productivity of three leading world crops (wheat, corn, and rice) in the irrigated areas over three decades

    No full text
    The overarching goal of this study was to perform a comprehensive meta-analysis of irrigated agricultural Crop Water Productivity (CWP) of the world’s three leading crops: wheat, corn, and rice based on three decades of remote sensing and non-remote sensing-based studies. Overall, CWP data from 148 crop growing study sites (60 wheat, 43 corn, and 45 rice) spread across the world were gathered from published articles spanning 31 different countries. There was overwhelming evidence of a significant increase in CWP with an increase in latitude for predominately northern hemisphere datasets. For example, corn grown in latitude 40–50° had much higher mean CWP (2.45 kg/m³) compared to mean CWP of corn grown in other latitudes such as 30–40° (1.67 kg/m³) or 20–30° (0.94 kg/m³). The same trend existed for wheat and rice as well. For soils, none of the CWP values, for any of the three crops, were statistically different. However, mean CWP in higher latitudes for the same soil was significantly higher than the mean CWP for the same soil in lower latitudes. This applied for all three crops studied. For wheat, the global CWP categories were low (≤0.75 kg/m³), medium (>0.75 to 1.25 to ≤1.75 kg/m³), and high (>1.75 kg/m³). For rice the global CWP categories were low (≤0.70 kg/m³), medium (>0.70 to ≤1.25 kg/m³), and high (>1.25 kg/m³). USA and China are the only two countries that have consistently high CWP for wheat, corn, and rice. Australia and India have medium CWP for wheat and rice. India’s corn, however, has low CWP. Egypt, Turkey, Netherlands, Mexico, and Israel have high CWP for wheat. Romania, Argentina, and Hungary have high CWP for corn, and Philippines has high CWP for rice. All other countries have either low or medium CWP for all three crops. Based on data in this study, the highest consumers of water for crop production also have the most potential for water savings. These countries are USA, India, and China for wheat; USA, China, and Brazil for corn; India, China, and Pakistan for rice. For example, even just a 10% increase in CWP of wheat grown in India can save 6974 billion liters of water. This is equivalent to creating 6974 lakes each of 100 m³ in volume that leads to many benefits such as acting as ‘water banks’ for lean season, recreation, and numerous ecological services. This study establishes the volume of water that can be saved for each crop in each country when there is an increase in CWP by 10%, 20%, and 30%

    Automated Cropland Fallow Algorithm (ACFA) for the Northern Great Plains of USA

    No full text
    ABSTRACTCropland fallowing is choosing not to plant a crop during a season when a crop is normally planted. It is an important component of many crop rotations and can improve soil moisture and health. Knowing which fields are fallow is critical to assess crop productivity and crop water productivity, needed for food security assessments. The annual spatial extent of cropland fallows is poorly understood within the United States (U.S.). The U.S. Department of Agriculture Cropland Data Layer does provide cropland fallow areas; however, at a significantly lower confidence than their cropland classes. This study developed a methodology to map cropland fallows within the Northern Great Plains region of the U.S. using an easily implementable decision tree algorithm leveraging training and validation data from wet (2019), normal (2015), and dry (2017) precipitation years to account for climatic variability. The decision trees automated cropland fallow algorithm (ACFA) was coded on a cloud platform utilizing remotely sensed, time-series data from the years 2010–2019 to separate cropland fallows from other land cover/land use classes. Overall accuracies varied between 96%-98%. Producer’s and user’s accuracies of cropland fallow class varied between 70-87%

    Mapping cropland extent of Southeast and Northeast Asia using multi-year time-series Landsat 30-m data using Random Forest classifier on Google Earth Engine.

    No full text
    Cropland extent maps are useful components for assessing food security. Ideally, such products are a useful addition to countrywide agricultural statistics since they are not politically biased and can be used to calculate cropland area for any spatial unit from an individual farm to various administrative unites (e.g., state, county, district) within and across nations, which in turn can be used to estimate agricultural productivity as well as degree of disturbance on food security from natural disasters and political conflict. However, existing cropland extent maps over large areas (e.g., Country, region, continent, world) are derived from coarse resolution imagery (250 m to 1 km pixels) and have many limitations such as missing fragmented and\or small farms with mixed signatures from different crop types and\or farming practices that can be, confused with other land cover. As a result, the coarse resolution maps have limited useflness in areas where fields are small (\u3c1 ha), such as in Southeast Asia. Furthermore, coarse resolution cropland maps have known uncertainties in both geo-precision of cropland location as well as accuracies of the product. To overcome these limitations, this research was conducted using multi-date, multi-year 30-m Landsat time-series data for 3 years chosen from 2013 to 2016 for all Southeast and Northeast Asian Countries (SNACs), which included 7 refined agro-ecological zones (RAEZ) and 12 countries (Indonesia, Thailand, Myanmar, Vietnam, Malaysia, Philippines, Cambodia, Japan, North Korea, Laos, South Korea, and Brunei). The 30-m (1 pixel = 0.09 ha) data from Landsat 8 Operational Land Imager (OLI) and Landsat 7 Enhanced Thematic Mapper (ETM+) were used in the study. Ten Landsat bands were used in the analysis (blue, green, red, NIR, SWIR1, SWIR2, Thermal, NDVI, NDWI, LSWI) along with additional layers of standard deviation of these 10 bands across 1 year, and global digital elevation model (GDEM)-derived slope and elevation bands. To reduce the impact of clouds, the Landsat imagery was time-composited over four time-periods (Period 1: January- April, Period 2: May-August, and Period 3: September-December) over 3-years. Period 4 was the standard deviation of all 10 bands taken over all images acquired during the 2015 calendar year. These four period composites, totaling 42 band data-cube, were generated for each of the 7 RAEZs. The reference training data (N = 7849) generated for the 7 RAEZ using sub-meter to 5-m very high spatial resolution imagery (VHRI) helped generate the knowledge-base to separate croplands from non-croplands. This knowledge-base was used to code and run a pixel-based random forest (RF) supervised machine learning algorithm on the Google Earth Engine (GEE) cloud computing environment to separate croplands from non-croplands. The resulting cropland extent products were evaluated using an independent reference validation dataset (N = 1750) in each of the 7 RAEZs as well as for the entire SNAC area. For the entire SNAC area, the overall accuracy was 88.1% with a producer’s accuracy of 81.6% (errors of omissions = 18.4%) and user’s accuracy of 76.7% (errors of commissions = 23.3%). For each of the 7 RAEZs overall accuracies varied from 83.2 to 96.4%. Cropland areas calculated for the 12 countries were compared with country areas reported by the United Nations Food and Agriculture Organization and other national cropland statistics resulting in an R2 value of 0.93. The cropland areas of provinces were compared with the province statistics that showed an R2 = 0.95 for South Korea and R2 = 0.94 for Thailand. The cropland products are made available on an interactive viewer at www.croplands.org and for download at National Aeronautics and Space Administration’s (NASA) Land Processes Distributed Active Archive Center (LP DAAC): https://lpdaac.usgs.gov/node/1281

    Agricultural cropland extent and areas of South Asia derived using Landsat satellite 30-m time-series big-data using random forest machine learning algorithms on the Google Earth Engine cloud

    No full text
    The South Asia (India, Pakistan, Bangladesh, Nepal, Sri Lanka and Bhutan) has a staggering 900 million people (~43% of the population) who face food insecurity or severe food insecurity as per United Nations, Food and Agriculture Organization’s (FAO) the Food Insecurity Experience Scale (FIES). The existing coarse-resolution (≥250-m) cropland maps lack precision in geo-location of individual farms and have low map accuracies. This also results in uncertainties in cropland areas calculated from such products. Thereby, the overarching goal of this study was to develop a high spatial resolution (30-m or better) baseline cropland extent product of South Asia for the year 2015 using Landsat satellite time-series big-data and machine learning algorithms (MLAs) on the Google Earth Engine (GEE) cloud computing platform. To eliminate the impact of clouds, 10 time-composited Landsat bands (blue, green, red, NIR, SWIR1, SWIR2, Thermal, EVI, NDVI, NDWI) were derived for each of the three time-periods over 12 months (monsoon: Days of the Year (DOY) 151–300; winter: DOY 301–365 plus 1–60; and summer: DOY 61–150), taking the every 8-day data from Landsat-8 and 7 for the years 2013–2015, for a total of 30-bands plus global digital elevation model (GDEM) derived slope band. This 31-band mega-file big data-cube was composed for each of the five agro-ecological zones (AEZ’s) of South Asia and formed a baseline data for image classification and analysis. Knowledge-base for the Random Forest (RF) MLAs were developed using spatially well spread-out reference training data (N = 2179) in five AEZs. The classification was performed on GEE for each of the five AEZs using well-established knowledge-base and RF MLAs on the cloud. Map accuracies were measured using independent validation data (N = 1185). The survey showed that the South Asia cropland product had a producer’s accuracy of 89.9% (errors of omissions of 10.1%), user’s accuracy of 95.3% (errors of commission of 4.7%) and an overall accuracy of 88.7%. The National and sub-national (districts) areas computed from this cropland extent product explained 80-96% variability when compared with the National statistics of the South Asian Countries. The full-resolution imagery can be viewed at full-resolution, by zooming-in to any location in South Asia or the world, at www.croplands.org and the cropland products of South Asia downloaded from The Land Processes Distributed Active Archive Center (LP DAAC) of National Aeronautics and Space Administration (NASA) and the United States Geological Survey (USGS): https://lpdaac.usgs.gov/products/gfsad30saafgircev001/

    Mapping cropland fallow areas in myanmar to scale up sustainable intensification of pulse crops in the farming system

    No full text
    Cropland fallows are the next best-bet for intensification and extensification, leading to increased food production and adding to the nutritional basket. The agronomical suitability of these lands can decide the extent of usage of these lands. Myanmar’s agricultural land (over 13.8 Mha) has the potential to expand by another 50% into additional fallow areas. These areas may be used to grow short-duration pulses, which are economically important and nutritionally rich, and constitute the diets of millions of people as well as provide an important source of livestock feed throughout Asia. Intensifying rice fallows will not only improve the productivity of the land but also increase the income of the smallholder farmers. The enhanced cultivation of pulses will help improve nutritional security in Myanmar and also help conserve natural resources and reduce environmental degradation. The objectives of this study was to use remote sensing methods to identify croplands in Myanmar and cropland fallow areas in two important agro-ecological regions, delta and coastal region and the dry zone. The study used moderate-resolution imaging spectroradiometer (MODIS) 250-m, 16-day normalized difference vegetation index (NDVI) maximum value composite (MVC), and land surface water index (LSWI) for one 1 year (1 June 2012–31 May 2013) along with seasonal field-plot level information and spectral matching techniques to derive croplands versus cropland fallows for each of the three seasons: the monsoon period between June and October; winter period between November and February; and summer period between March and May. The study showed that Myanmar had total net cropland area (TNCA) of 13.8 Mha. Cropland fallows during the monsoon season account for a meagre 2.4% of TNCA. However, in the winter season, 56.5% of TNCA (or 7.8 Mha) were classified as cropland fallows and during the summer season, 82.7% of TNCA (11.4 Mha) were cropland fallows. The producer’s accuracy of the cropland fallow class varied between 92 and 98% (errors of omission of 2 to 8%) and user’s accuracy varied between 82 and 92% (errors of commission of 8 to 18%) for winter and summer, respectively. Overall, the study estimated 19.2 Mha cropland fallows from the two major seasons (winter and summer). Out of this, 10.08 Mha has sufficient moisture (either from rainfall or stored soil water content) to grow short-season pulse crops. This potential with an estimated income of US300perhectare,ifexploitedsustainably,isestimatedtobringanadditionalnetincomeofaboutUS 300 per hectare, if exploited sustainably, is estimated to bring an additional net income of about US 1.5 billion to Myanmar per year if at least half (5.04 Mha) of the total cropland fallows (10.08 Mha) is covered with short season pulses
    corecore