37 research outputs found

    Modulation of small leucine-rich proteoglycans (SLRPs) expression in the mouse uterus by estradiol and progesterone

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have previously demonstrated that four members of the family of small leucine-rich-proteoglycans (SLRPs) of the extracellular matrix (ECM), named decorin, biglycan, lumican and fibromodulin, are deeply remodeled in mouse uterine tissues along the estrous cycle and early pregnancy. It is known that the combined action of estrogen (E2) and progesterone (P4) orchestrates the estrous cycle and prepares the endometrium for pregnancy, modulating synthesis, deposition and degradation of various molecules. Indeed, we showed that versican, another proteoglycan of the ECM, is under hormonal control in the uterine tissues.</p> <p>Methods</p> <p>E2 and/or medroxiprogesterone acetate (MPA) were used to demonstrate, by real time PCR and immunoperoxidase staining, respectively, their effects on mRNA expression and protein deposition of these SLRPs, in the uterine tissues.</p> <p>Results</p> <p>Decorin and lumican were constitutively expressed and deposited in the ECM in the absence of the ovarian hormones, whereas deposition of biglycan and fibromodulin were abolished from the uterine ECM in the non-treated group. Interestingly, ovariectomy promoted an increase in decorin, lumican and fibromodulin mRNA levels, while biglycan mRNA conspicuously decreased. Hormone replacement with E2 and/or MPA differentially modulates their expression and deposition.</p> <p>Conclusions</p> <p>The patterns of expression of these SLRPs in the uterine tissues were found to be hormone-dependent and uterine compartment-related. These results reinforce the existence of subpopulations of endometrial fibroblasts, localized into distinct functional uterine compartments, resembling the organization into basal and functional layers of the human endometrium.</p

    Mechanisms of Vascular Damage by Hemorrhagic Snake Venom Metalloproteinases: Tissue Distribution and In Situ Hydrolysis

    Get PDF
    Snakebite accidents by vipers cause a massive disturbance in hemostasis and tissue damage at the snakebite area. The systemic effects are often prevented by antivenom therapy. However, the local symptoms are not neutralized by antivenoms and are related to the temporary or permanent disability observed in many patients. Although the mechanisms involved in coagulation or necrotic disturbances induced by snake venoms are well known, the disruption of capillary vessels by SVMPs leading to hemorrhage and consequent local tissue damage is not fully understood. In our study, we reveal the mechanisms involved in hemorrhage induced by SVMPs by comparing the action of high and low hemorrhagic toxins isolated from Bothrops venoms, in mouse skin. We show remarkable differences in the tissue distribution and hydrolysis of collagen within the hemorrhagic lesions induced by high and low hemorrhagic metalloproteinases. According to our data, tissue accumulation of hemorrhagic toxins near blood vessel walls allowing the hydrolysis of basement membrane components, preferably collagen IV. These observations unveil new mechanistic insights supporting the local administration of metalloproteinases inhibitors as an alternative to improve snakebite treatment besides antivenom therapy

    Hormone-regulated expression and distribution of versican in mouse uterine tissues

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Remodeling of the extracellular matrix is one of the most striking features observed in the uterus during the estrous cycle and after hormone replacement. Versican (VER) is a hyaluronan-binding proteoglycan that undergoes RNA alternative splicing, generating four distinct isoforms. This study analyzed the synthesis and distribution of VER in mouse uterine tissues during the estrous cycle, in ovariectomized (OVX) animals and after 17beta-estradiol (E2) and medroxyprogesterone (MPA) treatments, either alone or in combination.</p> <p>Methods</p> <p>Uteri from mice in all phases of the estrous cycle, and animals subjected to ovariectomy and hormone replacement were collected for immunoperoxidase staining for versican, as well as PCR and quantitative Real Time PCR.</p> <p>Results</p> <p>In diestrus and proestrus, VER was exclusively expressed in the endometrial stroma. In estrus and metaestrus, VER was present in both endometrial stroma and myometrium. In OVX mice, VER immunoreaction was abolished in all uterine tissues. VER expression was restored by E2, MPA and E2+MPA treatments. Real Time PCR analysis showed that VER expression increases considerably in the MPA-treated group. Analysis of mRNA identified isoforms V0, V1 and V3 in the mouse uterus.</p> <p>Conclusion</p> <p>These results show that the expression of versican in uterine tissues is modulated by ovarian steroid hormones, in a tissue-specific manner. VER is induced in the myometrium exclusively by E2, whereas MPA induces VER deposition only in the endometrial stroma.</p

    Estradiol induces transcriptional and posttranscriptional modifications in versican expression in the mouse uterus

    Get PDF
    We have previously shown the differential expression of versican in the mouse uterus under ovarian hormone influence. We also demonstrated there is not a direct correlation between mRNA levels and protein expression, suggesting posttranscriptional events, such as alteration in mRNA stability. This posttranscriptional effect may result in the elongation and stabilization of transcripts poly(A) tail. Thus, the aim of this study was to analyze whether estradiol (E2) regulates versican mRNA stability and expression in a dose-related and time-dependent manner. For this purpose female mice were ovariectomized and treated with a single injection of 0.1 or 10 μg E2. To block transcription a group of females received a single injection of alpha-amanitin before hormone administration. Uterine tissues were collected 30 min, 1, 3, 6, 12 and 24 h after treatments and processed for quantitative real time PCR (qPCR), RACE-PAT Assay and immunohistochemistry. qPCR showed that versican mRNA levels are higher than control from 3 to 24 h after E2 administration, whereas after transcription inhibition versican mRNA unexpectedly increases within 3 h, which can be explained when transcriptional blockers alter the degradation rate of the transcript, resulting in the superinduction of this mRNA. Accordingly, analysis of versican transcript poly(A) tail evidenced a longer product 3 h after treatment, but not after 12 h. Versican immunoreaction becomes conspicuous in the superficial stroma only 3 h after E2 injection, whereas the whole stroma is immunoreactive from 6 h onward. These results demonstrate that E2 modulates versican at the transcriptional and posttranscriptional levels in a time-dependent manner.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) - Brazil (09/51788-1)CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior)CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico

    The Estrous Cycle Modulates Small Leucine-Rich Proteoglycans Expression in Mouse Uterine Tissues

    No full text
    In the pregnant mouse uterus, small leucine-rich proteoglycans (SLRPs) are drastically remodeled within a few hours after fertilization, suggesting that ovarian hormone levels modulate their synthesis and degradation. In this study, we followed by immunoperoxidase approach, the presence of four members of the SLRP family (decorin, lumican, biglycan, and fibromodulin) in the uterine tissues along the estrous cycle of the mouse. All molecules except fibromodulin, which predominates in the myometrium, showed a striking modulation in their distribution in the endometrial stroma, following the rise in the level of estrogen. Moreover, notable differences in the distribution of SLRPs were observed between superficial and deep stroma, as well as between the internal and external layers of the myometrium. Only biglycan and fibromodulin were expressed in the luminal and glandular epithelia. All four SLRPs were found in cytoplasmic granules of mononucleated cells. The pattern of distribution of the immunoreaction for these molecules in the uterine tissues was found to be estrous cycle-stage dependent, suggesting that these molecules undergo ovarian hormonal control and probably participate in the preparation of the uterus for decidualization and embryo implantation. In addition, this and previous results from our laboratory suggest the existence of two subpopulations of endometrial fibroblasts that may be related to the centrifugal development of the decidua. Anat Rec, 292:138-153, 2009. (c) 2008 Wiley-Liss, Inc.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)FAPESP[04/09947-1
    corecore