54 research outputs found

    Infrared imaging of comets

    Get PDF
    Thermal infrared imaging of comets provides fundamental information about the distribution of dust in their comae and tails. The imaging program at NASA Marshall Space Flight Center (MSFC) uses a unique 20-pixel bolometer array that was developed to image comets at 8 to 30 micrometer. These images provide the basis for: (1) characterizing the composition and size distribution of particles, (2) determining the mass-loss rates from cometary nuclei, and (3) describing the dynamics of the interaction between the dust and the solar radiation. Since the array became operational in 1985, researchers have produced a unique series of IR images of comets Giacobini-Zinner (GZ), Halley, and Wilson. That of GZ was the first groundbased thermal image ever made of a comet and was used to construct, with visible observations, an albedo map. Those data and dynamical analyses showed that GZ contained a population of large (approximately 300 micrometer), fluffy dust grains that formed a distinict inner tail. The accumulating body of images of various comets has also provided a basis for fruitfully intercomparing comet properties. Researchers also took advantage of the unique capabilities of the camera to resolve the inner, possible protoplanetary, disk of the star Beta Pictoris, while not a comet research program, that study is a fruitful additional application of the array to solar system astronomy

    Masers and the Massive Star Formation Process: New Insights Through Infrared Observations

    Full text link
    Our mid-infrared and near-infrared surveys over the last five years have helped to strengthen and clarify the relationships between water, methanol, and OH masers and the star formation process. Our surveys show that maser emission seems to be more closely associated with mid-infrared emission than cm radio continuum emission from UC HII regions. We find that masers of all molecular species surveyed trace a wide variety of phenomena and show a proclivity for linear distributions. The vast majority of these linear distributions can be explained by outflows or shocks, and in general do not appear to trace circumstellar disks as was previously thought. Some water and methanol masers that are not associated with radio continuum emission appear to trace infrared-bright hot cores, the earliest observable stage of massive stellar life before the onset of a UC HII region.Comment: 6 pages, 3 figures, to appear in the proceedings of IAU Symposium 227: "Massive Star Birth: A Crossroads of Astrophysics", version with full-resolution images available at http://www.ctio.noao.edu/~debuize

    12 and 18 micron images of dust surrounding HD 32297

    Full text link
    We present the first subarcsecond-resolution images at multiple mid-IR wavelengths of the thermally-emitting dust around the A0 star HD 32297. Our observations with T-ReCS at Gemini South reveal a nearly edge-on resolved disk at both 11.7 microns and 18.3 microns that extends ~150 AU in radius. The mid-IR is the third wavelength region in which this disk has been resolved, following coronagraphic observations by others of the source at optical and near-IR wavelengths. The global mid-IR colors and detailed consideration of the radial color-temperature distribution imply that the central part of the disk out to ~80 AU is relatively deficient in dust.Comment: 4 pages, 3 figures; accepted for publication in ApJ

    A disk census for the nearest group of young stars: Mid-infrared observations of the TW Hydrae Association

    Full text link
    A group of young, active stars in the vicinity of TW Hydrae has recently been identified as a possible physical association with a common origin. Given its proximity (∼\sim50 pc), age (∼\sim10 Myr) and abundance of binary systems, the TW Hya Association is ideally suited to studies of diversity and evolution of circumstellar disks. Here we present mid-infrared observations of 15 candidate members of the group, 11 of which have no previous flux measurements at wavelengths longer than 2μ\mum. We report the discovery of a possible 10μ\mum excess in CD -33∘^{\circ}7795, which may be due to a circumstellar disk or a faint, as yet undetected binary companion. Of the other stars, only TW Hya, HD 98800, Hen 3-600A, and HR 4796A -- all of which were detected by IRAS -- show excess thermal emission. Our 10μ\mum flux measurements for the remaining members of the Association are consistent with photospheric emission, allowing us to rule out dusty inner disks. In light of these findings, we discuss the origin and age of the TW Hya Association as well as implications for disk evolution timescales.Comment: 10 pages and 1 PostScript figure, accepted for publication in The Astrophysical Journal Letter
    • …
    corecore