2,462 research outputs found

    Quantum state tomography and quantum logical operations in a three qubits NMR quadrupolar system

    Full text link
    In this work, we present an implementation of quantum logic gates and algorithms in a three effective qubits system, represented by a (I = 7/2) NMR quadrupolar nuclei. To implement these protocols we have used the strong modulating pulses (SMP). The various stages of each implementation were verified by quantum state tomography (QST). It is presented here the results for the computational base states, Toffolli logic gates, and Deutsch-Jozsa and Grover algorithms. Also, we discuss the difficulties and advantages of implementing such protocols using the SMP technique in quadrupolar systems.Comment: 24 pages, 8 figure

    Coherent vibrational modes promote the ultrafast internal conversion and intersystem crossing in thiobases

    Get PDF
    Thionated nucleobases are obtained by replacing oxygen with sulphur atoms in the canonical nucleobases. They absorb light efficiently in the near-ultraviolet, populating singlet states which undergo intersystem crossing to the triplet manifold on an ultrashort time scale with a high quantum yield. Nonetheless there are still important open questions about the primary mechanisms responsible for this ultrafast transition. Here we track both the electronic and the vibrational ultrafast excited-state dynamics towards the triplet state for solvated 4-thiothymidine (4TT) and 4-thiouracil (4TU) with sub-30 fs broadband transient absorption spectroscopy in the ultraviolet. A global and target analysis allows us to simultaneously resolve the contributions of the different electronically and vibrationally excited states to the whole data set. Our experimental results, combined with state-of-the-art quantum mechanics/molecular mechanics simulations and Damped Oscillation Associated Spectra (DOAS) and target analysis, support that the relaxation to the triplet state is mediated by conical intersections promoted by vibrational coherences through the population of an intermediate singlet state. In addition, the analysis of the coherent vibrational dynamics reveals that, despite sharing the same relaxation mechanism and similar chemical structures, 4TT and 4TU exhibit rather different geometrical deformations, characterized by the conservation of planarity in 4TU and its partial rupture in 4TT

    A Unified Experimental/Theoretical Description of the Ultrafast Photophysics of Single and Double Thionated Uracils

    Get PDF
    Photoinduced processes in thiouracil derivatives have lately attracted considerable attention due to their suitability for innovative biological and pharmacological applications. Here, sub-20 fs broadband transient absorption spectroscopy in the near-UV are combined with CASPT2/MM decay path calculations to unravel the excited-state decay channels of water solvated 2-thio and 2,4-dithiouracil. These molecules feature linear absorption spectra with overlapping ππ* bands, leading to parallel decay routes which we systematically track for the first time. The results reveal that different processes lead to the triplet states population, both directly from the ππ* absorbing state and via the intermediate nπ* dark state. Moreover, the 2,4-dithiouracil decay pathways is shown to be strongly correlated either to those of 2- or 4-thiouracil, depending on the sulfur atom on which the electronic transition localizes

    Congenital Disorders of Glycosylation in Portugal—Two Decades of Experience

    Get PDF
    Objective: To describe the clinical, biochemical, and genetic features of both new and previously reported patients with congenital disorders of glycosylation (CDGs) diagnosed in Portugal over the last 20 years. Study design: The cohort includes patients with an unexplained multisystem or single organ involvement, with or without psychomotor disability. Serum sialotransferrin isoforms and, whenever necessary, apolipoprotein CIII isoforms and glycan structures were analyzed. Additional studies included measurement of phosphomannomutase (PMM) activity and analysis of lipid-linked oligosaccharides in fibroblasts. Sanger sequencing and massive parallel sequencing were used to identify causal variants or the affected gene, respectively. Results: Sixty-three individuals were diagnosed covering 14 distinct CDGs; 43 patients diagnosed postnatally revealed a type 1, 14 a type 2, and 2 a normal pattern on serum transferrin isoelectrofocusing. The latter patients were identified by whole exome sequencing. Nine of them presented also a hypoglycosylation pattern on apolipoprotein CIII isoelectrofocusing, pointing to an associated O-glycosylation defect. Most of the patients (62%) are PMM2-CDG and the remaining carry pathogenic variants in ALG1, ATP6AP1, ATP6AP2, ATP6V0A2, CCDC115, COG1, COG4, DPAGT1, MAN1B1, SLC35A2, SRD5A3, RFT1, or PGM1. Conclusions: Portuguese patients with CDGs are presented in this report, some of them showing unique clinical phenotypes. Among the 14 genes mutated in Portuguese individuals, 8 are shared with a previously reported Spanish cohort. However, regarding the mutational spectrum of PMM2-CDG, the most frequent CDG, a striking similarity between the 2 populations was found, as only 1 mutated allele found in the Portuguese group has not been reported in Spain.info:eu-repo/semantics/publishedVersio
    • 

    corecore