15 research outputs found

    Protective and Antioxidant Effects of a Chalconoid from Pulicaria incisa

    Get PDF
    Oxidative stress is involved in the pathogenesis of neurodegenerative diseases such as Parkinson's and Alzheimer's diseases. Astrocytes, the most abundant glial cells in the brain, protect neurons from reactive oxygen species (ROS) and provide them with trophic support, such as glial-derived neurotrophic factor (GDNF). Thus, any damage to astrocytes will affect neuronal survival. In the present study, by activity-guided fractionation, we have purified from the desert plant Pulicaria incisa two protective compounds and determined their structures by spectroscopic methods. The compounds were found to be new chalcones—pulichalconoid B and pulichalconoid C. This is the first study to characterize the antioxidant and protective effects of these compounds in any biological system. Using primary cultures of astrocytes, we have found that pulichalconoid B attenuated the accumulation of ROS following treatment of these cells with hydrogen peroxide by 89% and prevented 89% of the H2O2-induced death of astrocytes. Pulichalconoid B exhibited an antioxidant effect both in vitro and in the cellular antioxidant assay in astrocytes and microglial cells. Pulichalconoid B also caused a fourfold increase in GDNF transcription in these cells. Thus, this chalcone deserves further studies in order to evaluate if beneficial therapeutic effect exists

    CCR4 is a determinant of melanoma brain metastasis.

    Get PDF
    We previously identified the chemokine receptor CCR4 as part of the molecular signature of melanoma brain metastasis. The aim of this study was to determine the functional significance of CCR4 in melanoma brain metastasis. We show that CCR4 is more highly expressed by brain metastasizing melanoma cells than by local cutaneous cells from the same melanoma. Moreover, we found that the expression of CCR4 is significantly higher in paired clinical specimens of melanoma metastases than in samples of primary tumors from the same patients. Notably, the expression of the CCR4 ligands, Ccl22 and Ccl17 is upregulated at the earliest stages of brain metastasis, and precedes the infiltration of melanoma cells to the brain. In-vitro, CCL17 induced migration and transendothelial migration of melanoma cells. Functionally, human melanoma cells over-expressing CCR4 were more tumorigenic and produced a higher load of spontaneous brain micrometastasis than control cells. Blocking CCR4 with a small molecule CCR4 antagonist in-vivo, reduced the tumorigenicity and micrometastasis formation of melanoma cells. Taken together, these findings implicate CCR4 as a driver of melanoma brain metastasis

    Anti-Neuroinflammatory effects of the extract of Achillea fragrantissima

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The neuroinflammatory process plays a central role in the initiation and progression of neurodegenerative diseases such as Parkinson's and Alzheimer's diseases, and involves the activation of brain microglial cells. During the neuroinflammatory process, microglial cells release proinflammatory mediators such as cytokines, matrix metalloproteinases (MMP), Reactive oxygen species (ROS) and nitric oxide (NO). In the present study, extracts from 66 different desert plants were tested for their effect on lipopolysaccharide (LPS) - induced production of NO by primary microglial cells. The extract of <it>Achillea fragrantissima </it>(<it>Af</it>)<it/>, which is a desert plant that has been used for many years in traditional medicine for the treatment of various diseases, was the most efficient extract, and was further studied for additional anti-neuroinflammatory effects in these cells.</p> <p>Methods</p> <p>In the present study, the ethanolic extract prepared from <it>Af </it>was tested for its anti-inflammatory effects on lipopolysaccharide (LPS)-activated primary cultures of brain microglial cells. The levels of the proinflammatory cytokines interleukin1β (IL-1β) and tumor necrosis factor-α (TNFα) secreted by the cells were determined by reverse transcriptase-PCR and Enzyme-linked immunosorbent assay (ELISA), respectively. NO levels secreted by the activate cells were measured using Griess reagent, ROS levels were measured by 2'7'-dichlorofluorescein diacetate (DCF-DA), MMP-9 activity was measured using gel zymography, and the protein levels of the proinflammatory enzymes cyclooxygenase-2 (COX-2) and induced nitric oxide synthase (iNOS) were measured by Western blot analysis. Cell viability was assessed using Lactate dehydrogenase (LDH) activity in the media conditioned by the cells or by the crystal violet cell staining.</p> <p>Results</p> <p>We have found that out of the 66 desert plants tested, the extract of <it>Af </it>was the most efficient extract and inhibited ~70% of the NO produced by the LPS-activated microglial cells, without affecting cell viability. In addition, this extract inhibited the LPS - elicited expression of the proinflammatory mediators IL-1β, TNFα, MMP-9, COX-2 and iNOS in these cells.</p> <p>Conclusions</p> <p>Thus, phytochemicals present in the <it>Af </it>extract could be beneficial in preventing/treating neurodegenerative diseases in which neuroinflammation is part of the pathophysiology.</p

    3,5,4′-trihydroxy-6,7,3′-trimethoxyflavone protects against beta amyloid-induced neurotoxicity through antioxidative activity and interference with cell signaling

    No full text
    Abstract Background Alzheimer’s disease is a neurodegenerative disease, characterized by progressive decline in memory and cognitive functions, that results from loss of neurons in the brain. Amyloid beta (Aβ) protein and oxidative stress are major contributors to Alzheimer’s disease, therefore, protecting neuronal cells against Aβ-induced toxicity and oxidative stress might form an effective approach for treatment of this disease. 3,5,4′-trihydroxy-6,7,3′-trimethoxyflavone (TTF) is a flavonoid we have purified from the plant Achillea fragrantissima; and the present study examined, for the first time, the effects of this compound on Aβ-toxicity to neuronal cells. Methods Various chromatographic techniques were used to isolate TTF from the plant Achillea fragrantissima, and an N2a neuroblastoma cell line was used to study its activities. The cellular levels of total and phosphorylated stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) and of total and phosphorylated extracellular signal-regulated kinase (ERK 1/2) were determined by enzyme-linked immunosorbent assay (ELISA). Intracellular reactive oxygen species (ROS) levels were measured by using 2′,7′-dichlorofluorescein diacetate (DCF-DA). Cytotoxicity and cell viability were assessed by using lactate dehydrogenase (LDH) activity in cell-conditioned media, or by crystal violet cell staining, respectively. Results TTF prevented the Aβ-induced death of neurons and attenuated the intracellular accumulation of ROS following treatment of these cells with Aβ. TTF also inhibited the Aβ-induced phosphorylation of the signaling proteins SAPK/JNK and ERK 1/2, which belong to the mitogen-activated protein kinase (MAPK) family. Conclusion TTF should be studied further as a potential therapeutic means for the treatment of Alzheimer’s disease

    Antioxidant and Astroprotective Effects of a Pulicaria incisa Infusion

    Get PDF
    Oxidative stress is involved in the pathogenesis of neurodegenerative diseases such as Parkinson's and Alzheimer's diseases. Astrocytes, the most abundant glial cells in the brain, protect neurons from reactive oxygen species (ROS) and provide them with trophic support, such as glial-derived neurotrophic factor (GDNF). Thus, any damage to astrocytes will affect neuronal survival. In the present study, an infusion prepared from the desert plant Pulicaria incisa (Pi) was tested for its protective and antioxidant effects on astrocytes subjected to oxidative stress. The Pi infusion attenuated the intracellular accumulation of ROS following treatment with hydrogen peroxide and zinc and prevented the H2O2-induced death of astrocytes. The Pi infusion also exhibited an antioxidant effect in vitro and induced GDNF transcription in astrocytes. It is proposed that this Pi infusion be further evaluated for use as a functional beverage for the prevention and/or treatment of brain injuries and neurodegenerative diseases in which oxidative stress plays a role

    Achillolide A Protects Astrocytes against Oxidative Stress by Reducing Intracellular Reactive Oxygen Species and Interfering with Cell Signaling

    No full text
    Achillolide A is a natural sesquiterpene lactone that we have previously shown can inhibit microglial activation. In this study we present evidence for its beneficial effects on astrocytes under oxidative stress, a situation relevant to neurodegenerative diseases and brain injuries. Viability of brain astrocytes (primary cultures) was determined by lactate dehydrogenase (LDH) activity, intracellular ROS levels were detected using 2′,7′-dichlorofluorescein diacetate, in vitro antioxidant activity was measured by differential pulse voltammetry, and protein phosphorylation was determined using specific ELISA kits. We have found that achillolide A prevented the H2O2-induced death of astrocytes, and attenuated the induced intracellular accumulation of reactive oxygen species (ROS). These activities could be attributed to the inhibition of the H2O2-induced phosphorylation of MAP/ERK kinase 1 (MEK1) and p44/42 mitogen-activated protein kinases (MAPK), and to the antioxidant activity of achillolide A, but not to H2O2 scavenging. This is the first study that demonstrates its protective effects on brain astrocytes, and its ability to interfere with MAPK activation. We propose that achillolide A deserves further evaluation for its potential to be developed as a drug for the prevention/treatment of neurodegenerative diseases and brain injuries where oxidative stress is part of the pathophysiology
    corecore