3 research outputs found

    Rate-Induced Transitions in Networked Complex Adaptive Systems: Exploring Dynamics and Management Implications Across Ecological, Social, and Socioecological Systems

    Full text link
    Complex adaptive systems (CASs), from ecosystems to economies, are open systems and inherently dependent on external conditions. While a system can transition from one state to another based on the magnitude of change in external conditions, the rate of change -- irrespective of magnitude -- may also lead to system state changes due to a phenomenon known as a rate-induced transition (RIT). This study presents a novel framework that captures RITs in CASs through a local model and a network extension where each node contributes to the structural adaptability of others. Our findings reveal how RITs occur at a critical environmental change rate, with lower-degree nodes tipping first due to fewer connections and reduced adaptive capacity. High-degree nodes tip later as their adaptability sources (lower-degree nodes) collapse. This pattern persists across various network structures. Our study calls for an extended perspective when managing CASs, emphasizing the need to focus not only on thresholds of external conditions but also the rate at which those conditions change, particularly in the context of the collapse of surrounding systems that contribute to the focal system's resilience. Our analytical method opens a path to designing management policies that mitigate RIT impacts and enhance resilience in ecological, social, and socioecological systems. These policies could include controlling environmental change rates, fostering system adaptability, implementing adaptive management strategies, and building capacity and knowledge exchange. Our study contributes to the understanding of RIT dynamics and informs effective management strategies for complex adaptive systems in the face of rapid environmental change.Comment: 25 pages, 4 figures, 1 box, supplementary informatio

    Global trade network patterns are coupled to fisheries sustainability

    No full text
    The rapid development of seafood trade networks alongside the decline in biomass of many marine populations raises important questions about the role of global trade in fisheries sustainability. Mounting empirical and theoretical evidence shows the importance of trade development on commercially exploited species. However, there is limited understanding of how the development of trade networks, such as differences in connectivity and duration, affects fisheries sustainability. In a global analysis of over 400,000 bilateral trade flows and stock status estimates for 876 exploited fish and marine invertebrates from 223 territories, we reveal patterns between seafood trade network indicators and fisheries sustainability using a dynamic panel regression analysis. We found that fragmented networks with strong connectivity within a group of countries and weaker links between those groups (modularity) are associated with higher relative biomass. From 1995 to 2015, modularity fluctuated, and the number of trade connections (degree) increased. Unlike previous studies, we found no relationship between the number or duration of trade connections and fisheries sustainability. Our results highlight the need to jointly investigate fisheries and trade. Improved coordination and partnerships between fisheries authorities and trade organizations present opportunities to foster more sustainable fisheries
    corecore