6 research outputs found

    Pathology and glia type specific changes of the DPP4 activity in the spinal cord contributes to the development and maintenance of hyperalgesia and shapes opioid signalling in chronic pain states

    Get PDF
    Altered pain sensations such as hyperalgesia and allodynia are characteristic features of various chronic pain states, and remain difficult to treat. We have shown previously that spinal application of dipeptidyl peptidase 4 (DPP4) enzyme inhibitors results in a strong antihyperalgesic effect during inflammatory pain states. In this study we observed a low level of mRNA for DPP4 in the rat spinal dorsal horn in physiological conditions, which did not change significantly either in carrageenan-induced inflammatory or partial nerve ligation-generated neuropathic states. Although DPP4 protein was detected in neurons, astrocytes and microglia in naïve animals its expression significantly increased in astrocytes during inflammation and in microglia in neuropathic conditions. Intrathecal application of two DPP4 inhibitors the tripeptide isoleucin-prolin-isoleucin (IPI) and the antidiabetic drug vildagliptin resulted in robust opioid-dependent antihyperalgesic effect during inflammation and an opioid-independent effect in the Seltzer model. The opioid-mediated antihyperalgesic effect of IPI was exclusively related to mu-opioid receptors, while vildagliptin affected mainly delta-receptor activity, although mu- and kappa-receptors were also involved. Our results suggest a pathology and glia type specific changes of the DPP4 activity in the spinal cord which contributes to the development and maintenance of hyperalgesia and shapes opioid signalling

    The Neurokinin-1 Receptor Contributes to the Early Phase of Lipopolysaccharide-Induced Fever via Stimulation of Peripheral Cyclooxygenase-2 Protein Expression in Mice

    No full text
    Neurokinin (NK) signaling is involved in various inflammatory processes. A common manifestation of systemic inflammation is fever, which is usually induced in animal models with the administration of bacterial lipopolysaccharide (LPS). A role for the NK1 receptor was shown in LPS-induced fever, but the underlying mechanisms of how the NK1 receptor contributes to febrile response, especially in the early phase, have remained unknown. We administered LPS (120 µg/kg, intraperitoneally) to mice with the Tacr1 gene, i.e., the gene encoding the NK1 receptor, either present (Tacr1+/+) or absent (Tacr1−/−) and measured their thermoregulatory responses, serum cytokine levels, tissue cyclooxygenase-2 (COX-2) expression, and prostaglandin (PG) E2 concentration. We found that the LPS-induced febrile response was attenuated in Tacr1−/− compared to their Tacr1+/+ littermates starting from 40 min postinfusion. The febrigenic effect of intracerebroventricularly administered PGE2 was not suppressed in the Tacr1−/− mice. Serum concentration of pyrogenic cytokines did not differ between Tacr1−/− and Tacr1+/+ at 40 min post-LPS infusion. Administration of LPS resulted in amplification of COX-2 mRNA expression in the lungs, liver, and brain of the mice, which was statistically indistinguishable between the genotypes. In contrast, the LPS-induced augmentation of COX-2 protein expression was attenuated in the lungs and tended to be suppressed in the liver of Tacr1−/− mice compared with Tacr1+/+ mice. The Tacr1+/+ mice responded to LPS with a significant surge of PGE2 production in the lungs, whereas Tacr1−/− mice did not. In conclusion, the NK1 receptor is necessary for normal fever genesis. Our results suggest that the NK1 receptor contributes to the early phase of LPS-induced fever by enhancing COX-2 protein expression in the periphery. These findings advance the understanding of the crosstalk between NK signaling and the “cytokine-COX-2-prostaglandin E2” axis in systemic inflammation, thereby open up the possibilities for new therapeutic approaches

    Transient Receptor Potential Channel Ankyrin-1 Is Not a Cold Sensor for Autonomic Thermoregulation in Rodents

    No full text
    The rodent transient receptor potential ankyrin-1 (TRPA1) channel has been hypothesized to serve as a temperature sensor for thermoregulation in the cold. We tested this hypothesis by using deletion of the Trpa1 gene in mice and pharmacological blockade of the TRPA1 channel in rats. In both Trpa1(−/−) and Trpa1(+/+) mice, severe cold exposure (8°C) resulted in decreases of skin and deep body temperatures to ∼8°C and 13°C, respectively, both temperatures being below the reported 17°C threshold temperature for TRPA1 activation. Under these conditions, Trpa1(−/−) mice had the same dynamics of body temperature as Trpa1(+/+) mice and showed no weakness in the tail skin vasoconstriction response or thermogenic response to cold. In rats, the effects of pharmacological blockade were studied by using two chemically unrelated TRPA1 antagonists: the highly potent and selective compound A967079, which had been characterized earlier, and the relatively new compound 43 ((4R)-1,2,3,4-tetrahydro-4-[3-(3-methoxypropoxy)phenyl]-2-thioxo-5H-indeno[1,2-d]pyrimidin-5-one), which we further characterized in the present study and found to be highly potent (IC(50) against cold of ∼8 nm) and selective. Intragastric administration of either antagonist at 30 mg/kg before severe (3°C) cold exposure did not affect the thermoregulatory responses (deep body and tail skin temperatures) of rats, even though plasma concentrations of both antagonists well exceeded their IC(50) value at the end of the experiment. In the same experimental setup, blocking the melastatin-8 (TRPM8) channel with AMG2850 (30 mg/kg) attenuated cold-defense mechanisms and led to hypothermia. We conclude that TRPA1 channels do not drive autonomic thermoregulatory responses to cold in rodents

    The hypothermic effect of hydrogen sulfide is mediated by the transient receptor potential ankyrin-1 channel in mice

    No full text
    Hydrogen sulfide (H(2)S) has been shown in previous studies to cause hypothermia and hypometabolism in mice, and its thermoregulatory effects were subsequently investigated. However, the molecular target through which H(2)S triggers its effects on deep body temperature has remained unknown. We investigated the thermoregulatory response to fast-(Na(2)S) and slow-releasing (GYY4137) H(2)S donors in C57BL/6 mice, and then tested whether their effects depend on the transient receptor potential ankyrin-1 (TRPA1) channel in Trpa1 knockout (Trpa1(−/−)) and wild-type (Trpa1(+/+)) mice. Intracerebroventricular administration of Na(2)S (0.5–1 mg/kg) caused hypothermia in C57BL/6 mice, which was mediated by cutaneous vasodilation and decreased thermogenesis. In contrast, intraperitoneal administration of Na(2)S (5 mg/kg) did not cause any thermoregulatory effect. Central administration of GYY4137 (3 mg/kg) also caused hypothermia and hypometabolism. The hypothermic response to both H(2)S donors was significantly (p < 0.001) attenuated in Trpa1(−/−) mice compared to their Trpa1(+/+) littermates. Trpa1 mRNA transcripts could be detected with RNAscope in hypothalamic and other brain neurons within the autonomic thermoeffector pathways. In conclusion, slow- and fast-releasing H(2)S donors induce hypothermia through hypometabolism and cutaneous vasodilation in mice that is mediated by TRPA1 channels located in the brain, presumably in hypothalamic neurons within the autonomic thermoeffector pathways
    corecore