85 research outputs found
Electron Standing Wave Formation in Atomic Wires
Using the Landauer formulation of transport theory and tight binding models
of the electronic structure, we study electron transport through atomic wires
that form 1D constrictions between pairs of metallic nano-contacts. Our results
are interpreted in terms of electron standing waves formed in the atomic wires
due to interference of electron waves reflected at the ends of the atomic
constrictions. We explore the influence of the chemistry of the atomic
wire-metal contact interfaces on these standing waves and the associated
transport resonances by considering two types of atomic wires: gold wires
attached to gold contacts and carbon wires attached to gold contacts. We find
that the conductance of the gold wires is roughly for the
wire lengths studied, in agreement with experiments. By contrast, for the
carbon wires the conductance is found to oscillate strongly as the number of
atoms in the wire varies, the odd numbered chains being more conductive than
the even numbered ones, in agreement with previous theoretical work that was
based on a different model of the carbon wire and metal contacts.Comment: 14 pages, includes 6 figure
Quantum heat transfer through an atomic wire
We studied the phononic heat transfer through an atomic dielectric wire with
both infinite and finite lengths by using a model Hamiltonian approach. At low
temperature under ballistic transport, the thermal conductance contributed by
each phonon branch of a uniform and harmonic chain cannot exceed the well-known
value which depends linearly on temperature but is material independent. We
predict that this ballistic thermal conductance will exhibit stepwise behavior
as a function of temperature. By performing numerical calculations on a more
realistic system, where a small atomic chain is placed between two reservoirs,
we also found resonance modes, which should also lead to the stepwise behavior
in the thermal conductance.Comment: 14 pages, 2 separate figure
Quantum point contact on graphite surface
The conductance through a quantum point contact created by a sharp and hard
metal tip on the graphite surface has features which to our knowledge have not
been encountered so far in metal contacts or in nanowires. In this paper we
first investigate these features which emerge from the strongly directional
bonding and electronic structure of graphite, and provide a theoretical
understanding for the electronic conduction through quantum point contacts. Our
study involves the molecular-dynamics simulations to reveal the variation of
interlayer distances and atomic structure at the proximity of the contact that
evolves by the tip pressing toward the surface. The effects of the elastic
deformation on the electronic structure, state density at the Fermi level, and
crystal potential are analyzed by performing self-consistent-field
pseudopotential calculations within the local-density approximation. It is
found that the metallicity of graphite increases under the uniaxial compressive
strain perpendicular to the basal plane. The quantum point contact is modeled
by a constriction with a realistic potential. The conductance is calculated by
representing the current transporting states in Laue representation, and the
variation of conductance with the evolution of contact is explained by taking
the characteristic features of graphite into account. It is shown that the
sequential puncturing of the layers characterizes the conductance.Comment: LaTeX, 11 pages, 9 figures (included), to be published in Phys. Rev.
B, tentatively scheduled for 15 September 1998 (Volume 58, Number 12
Resonant transmission through an open quantum dot
We have measured the low-temperature transport properties of a quantum dot
formed in a one-dimensional channel. In zero magnetic field this device shows
quantized ballistic conductance plateaus with resonant tunneling peaks in each
transition region between plateaus. Studies of this structure as a function of
applied perpendicular magnetic field and source-drain bias indicate that
resonant structure deriving from tightly bound states is split by Coulomb
charging at zero magnetic field.Comment: To be published in Phys. Rev. B (1997). 8 LaTex pages with 5 figure
Conductance and density of states as the Kramers-Kronig dispersion relation
By applying the Kramers-Kronig dispersion relation to the transmission
amplitude a direct connection of the conductance with the density of states is
given in quantum scattering systems connected to two one-channel leads.
Using this method we show that in the Fano resonance the peak position of the
density of states is generally different from the position of the corresponding
conductance peak, whereas in the Breit-Wigner resonance those peak positions
coincide.
The lineshapes of the density of states are well described by a Lorentz type
in the both resonances.
These results are verified by another approach using a specific form of the
scattering matrix to describe scattering resonances.Comment: 9 pages, 4 figure
Coherent quantum transport in narrow constrictions in the presence of a finite-range longitudinally polarized time-dependent field
We have studied the quantum transport in a narrow constriction acted upon by
a finite-range longitudinally polarized time-dependent electric field. The
electric field induces coherent inelastic scatterings which involve both
intra-subband and inter-sideband transitions. Subsequently, the dc conductance
G is found to exhibit suppressed features. These features are recognized as the
quasi-bound-state (QBS) features which are associated with electrons making
transitions to the vicinity of a subband bottom, of which the density of states
is singular. Having valley-like instead of dip-like structures, these QBS
features are different from the G characteristics for constrictions acted upon
by a finite-range time-modulated potential. In addition, the subband bottoms in
the time-dependent electric field region are shifted upward by an energy
proportional to the square of the electric field and inversely proportional to
the square of the frequency. This effective potential barrier is originated
from the square of the vector potential and it leads to the interesting
field-sensitive QBS features. An experimental set-up is proposed for the
observation of these features.Comment: 8 pages, 4 figure
State Orthogonalization by Building a Hilbert Space: A New Approach to Electronic Quantum Transport in Molecular Wires
Quantum descriptions of many complex systems are formulated most naturally in
bases of states that are not mutually orthogonal. We introduce a general and
powerful yet simple approach that facilitates solving such models exactly by
embedding the non-orthogonal states in a new Hilbert space in which they are by
definition mutually orthogonal. This novel approach is applied to electronic
transport in molecular quantum wires and is used to predict conductance
antiresonances of a new type that arise solely out of the non-orthogonality of
the local orbitals on different sites of the wire.Comment: 4 pages 1 figur
- …