31 research outputs found

    Polarized 3 parton production in inclusive DIS at small x

    Get PDF
    Azimuthal angular correlations between produced hadrons/jets in high energy collisions are a sensitive probe of the dynamics of QCD at small x. Here we derive the triple differential cross section for inclusive production of 3 polarized partons in DIS at small x using the spinor helicity formalism. The target proton or nucleus is described using the Color Glass Condensate (CGC) formalism. The resulting expressions are used to study azimuthal angular correlations between produced partons in order to probe the gluon structure of the target hadron or nucleus. Our analytic expressions can also be used to calculate the real part of the Next to Leading Order (NLO) corrections to di-hadron production in DIS by integrating out one of the three final state partons.Comment: 5 pages, 6 figures; version accepted for publication in Physics Letters

    Feynman parametrization and Mellin summation at finite temperature

    Full text link
    We show that the Mellin summation technique (MST) is a well defined and useful tool to compute loop integrals at finite temperature in the imaginary-time formulation of thermal field theory, especially when interested in the infrared limit of such integrals. The method makes use of the Feynman parametrization which has been claimed to have problems when the analytical continuation from discrete to arbitrary complex values of the Matsubara frequency is performed. We show that without the use of the MST, such problems are not intrinsic to the Feynman parametrization but instead, they arise as a result of (a) not implementing the periodicity brought about by the possible values taken by the discrete Matsubara frequencies before the analytical continuation is made and (b) to the changing of the original domain of the Feynman parameter integration, which seemingly simplifies the expression but in practice introduces a spurious endpoint singularity. Using the MST, there are no problems related to the implementation of the periodicity but instead, care has to be taken when the sum of denominators of the original amplitude vanishes. We apply the method to the computation of loop integrals appearing when the effects of external weak magnetic fields on the propagation of scalar particles is considered.Comment: 16 pages, 1 figure. Discussion expanded. References added. Published versio

    Vacuum Polarization and Dynamical Chiral Symmetry Breaking: Phase Diagram of QED with Four-Fermion Contact Interaction

    Full text link
    We study chiral symmetry breaking for fundamental charged fermions coupled electromagnetically to photons with the inclusion of four-fermion contact self-interaction term. We employ multiplicatively renormalizable models for the photon dressing function and the electron-photon vertex which minimally ensures mass anomalous dimension = 1. Vacuum polarization screens the interaction strength. Consequently, the pattern of dynamical mass generation for fermions is characterized by a critical number of massless fermion flavors above which chiral symmetry is restored. This effect is in diametrical opposition to the existence of criticality for the minimum interaction strength necessary to break chiral symmetry dynamically. The presence of virtual fermions dictates the nature of phase transition. Miransky scaling laws for the electromagnetic interaction strength and the four-fermion coupling, observed for quenched QED, are replaced by a mean-field power law behavior corresponding to a second order phase transition. These results are derived analytically by employing the bifurcation analysis, and are later confirmed numerically by solving the original non-linearized gap equation. A three dimensional critical surface is drawn to clearly depict the interplay of the relative strengths of interactions and number of flavors to separate the two phases. We also compute the beta-function and observe that it has ultraviolet fixed point. The power law part of the momentum dependence, describing the mass function, reproduces the quenched limit trivially. We also comment on the continuum limit and the triviality of QED.Comment: 9 pages, 10 figure

    A beam-beam monitoring detector for the MPD experiment at NICA

    Full text link
    The Multi-Purpose Detector (MPD) is to be installed at the Nuclotron Ion Collider fAcility (NICA) of the Joint Institute for Nuclear Research (JINR). Its main goal is to study the phase diagram of the strongly interacting matter produced in heavy-ion collisions. These studies, while providing insight into the physics of heavy-ion collisions, are relevant for improving our understanding of the evolution of the early Universe and the formation of neutron stars. In order to extend the MPD trigger capabilities, we propose to include a high granularity beam-beam monitoring detector (BE-BE) to provide a level-0 trigger signal with an expected time resolution of 30 ps. This new detector will improve the determination of the reaction plane by the MPD experiment, a key measurement for flow studies that provides physics insight into the early stages of the reaction. In this work, we use simulated Au+Au collisions at NICA energies to show the potential of such a detector to determine the event plane resolution, providing further redundancy to the detectors originally considered for this purpose namely, the Fast Forward Detector (FFD) and the Hadron Calorimeter (HCAL). We also show our results for the time resolution studies of two prototype cells carried out at the T10 beam line at the CERN PS complex.Comment: 16 pages, 12 figures. Updated to published version with added comments and correction
    corecore