27 research outputs found
Differentiated adipose-derived stem cell cocultures for bone regeneration in polymer scaffolds in vivo.
Critical-sized bone defects can lead to significant morbidity, and interventions are limited by the availability and donor-site morbidity of bone grafts. Polymer scaffolds seeded with cells have been explored to replace bone grafts. Adipose-derived stem cells have shown great promise for vascularization and osteogenesis of these constructs, and cocultures of differentiated stem cells are being explored to augment vessel and bone formation. Adipose-derived stem cells were differentiated into endothelial cells and osteoblasts, and in vitro studies showed increased proliferation of cocultured cells compared with undifferentiated adipose-derived stem cells and monocultures of endothelial cells and osteoblasts. The cells were seeded into polylactic acid gas-plasma-treated scaffolds as cocultures and monocultures and then implanted into critical-sized rat calvarial defects. The cocultures were in a 1:1 osteoblast to endothelial cell ratio. The increase in proliferation seen by the cocultured cells in vitro did not translate to increased vascularization and osteogenesis in vivo. In vivo, there were trends of increased vascularization in the endothelial cell group and increased osteogenesis in the osteoblast and endothelial monoculture groups, but no increase was seen in the coculture group compared with the undifferentiated adipose-derived stem cells. Endothelial cells enhance vascularization and osteoblast and endothelial cell monocultures enhance bone formation in the polymer scaffold. Predifferentiation of adipose-derived stem cells is promising for improving vascularization and osteogenesis in polymer scaffolds but requires future evaluation of coculture ratios to fully characterize this response
Polyelectrolyte multilayers and capsules: S-layer functionalization for improving stability and biocompatibility
Recent advances in medicine and biotechnology have brought about the need to develop nano-engineered delivery systems that can encapsulate a wide variety of therapeutics and that could allow their targeted delivery and sustained release. Nanostructured polyelectrolyte multilayers (NPMs) and capsules (NPCs), fabricated by electrostatic layer-by-layer (LbL) technique have been proposed for the functionalization of biomaterials and as delivery systems. This paper focuses on the degradation and biocompatibility characterization of NMPs and NPCs functionalized with bacterial self-assembled proteins (S-Layers). S-layers have been proposed as an efficient strategy for the functionalization of NPMs and NPCs. In present work, S-layers were recrystallized on mica and imaged by atomic force microscopy. The LbL assembly and the stability of cationic poly (allylamine hydrochloride) and anionic sodium poly (styrene sulfonate) multilayers functionalized with a terminal S-Layer were investigated by means of quartz crystal microbalance. In order to evaluate the impact of S-layer functionalization on the degradation of NPCs, S-Layer functionalized NPCs were characterized in vitro in terms of cell morphology and viability. The results revealed the role of S-layers in decreasing component release from NPMs and thus in increasing release time from NPCs
Connexin hemichannels drive lactation-induced osteocyte acidification and perilacunar-canalicular remodeling
Summary: The maternal skeleton experiences significant bone loss during lactation, followed by rapid restoration post weaning. Parathyroid-related protein (PTHrP)-induced acidification of the perilacunar matrix by osteocytes is crucial in this process, yet its mechanism remains unclear. Here, we identify Cx43 hemichannels (HCs) as key mediators of osteocyte acidification and perilacunar-canalicular remodeling (PLR). Utilizing transgenic mouse models expressing dominant-negative Cx43 mutants, we show that mice with impaired Cx43 HCs exhibit attenuated lactation-induced responses compared to wild-type and only gap junction-impaired groups, including lacunar enlargement, upregulation of PLR genes, and bone loss with compromised mechanical properties. Furthermore, inhibition of HCs by a Cx43 antibody blunts PTHrP-induced calcium influx and protein kinase A activation, followed by impaired osteocyte acidification. Additionally, impeded HCs suppress bone recovery during the post-lactation period. Our findings highlight the pivotal role of Cx43 HCs in orchestrating dynamic bone changes during lactation and recovery by regulating acidification and remodeling enzyme expression
Endotracheal tubes with dexamethasone eluting electrospun coating improve tissue mechanical function after upper airway injury
Abstract Corticosteroid-eluting endotracheal tubes (ETTs) were developed and employed in a swine laryngotracheal injury model to maintain airway patency and provide localized drug delivery to inhibit fibrotic scarring. Polycaprolactone (PCL) fibers with or without dexamethasone were electrospun onto the ETT surface PCL-only coated ETTs and placed in native airways of 18 Yorkshire swine. Regular and dexamethasone-PCL coated ETTs were placed in airways of another 18 swine injured by inner laryngeal mucosal abrasion. All groups were evaluated after 3, 7 and 14 days (n = 3/treatment/time). Larynges were bisected and localized stiffness determined by normal indentation, then sequentially matched with histological assessment. In the native airway, tissue stiffness with PCL-only ETT placement increased significantly from 3 to 7 days (p = 0.0016) and 3 to 14 days (p < 0.0001) while dexamethasone-PCL ETT placement resulted in stiffness decreasing from 7 to 14 days (p = 0.031). In the injured airway, localized stiffness at 14 days was significantly greater after regular ETT placement (23.1 ± 0.725 N/m) versus dexamethasone-PCL ETTs (17.10 ± 0.930 N/m, p < 0.0001). Dexamethasone-loaded ETTs were found to reduce laryngotracheal tissue stiffening after simulated intubation injury compared to regular ETTs, supported by a trend of reduced collagen in the basement membrane in injured swine over time. Findings suggest localized corticosteroid delivery allows for tissue stiffness control and potential use as an approach for prevention and treatment of scarring caused by intubation injury
Caspase-2 maintains bone homeostasis by inducing apoptosis of oxidatively-damaged osteoclasts.
Osteoporosis is a silent disease, characterized by a porous bone micro-structure that enhances risk for fractures and associated disabilities. Senile, or age-related osteoporosis (SO), affects both men and women, resulting in increased morbidity and mortality. However, cellular and molecular mechanisms underlying senile osteoporosis are not fully known. Recent studies implicate the accumulation of reactive oxygen species (ROS) and increased oxidative stress as key factors in SO. Herein, we show that loss of caspase-2, a cysteine aspartate protease involved in oxidative stress-induced apoptosis, results in total body and femoral bone loss in aged mice (20% decrease in bone mineral density), and an increase in bone fragility (30% decrease in fracture strength). Importantly, we demonstrate that genetic ablation or selective inhibition of caspase-2 using zVDVAD-fmk results in increased numbers of bone-resorbing osteoclasts and enhanced tartrate-resistant acid phosphatase (TRAP) activity. Conversely, transfection of osteoclast precursors with wild type caspase-2 but not an enzymatic mutant, results in a decrease in TRAP activity. We demonstrate that caspase-2 expression is induced in osteoclasts treated with oxidants such as hydrogen peroxide and that loss of caspase-2 enhances resistance to oxidants, as measured by TRAP activity, and decreases oxidative stress-induced apoptosis of osteoclasts. Moreover, oxidative stress, quantified by assessment of the lipid peroxidation marker, 4-HNE, is increased in Casp2-/- bone, perhaps due to a decrease in antioxidant enzymes such as SOD2. Taken together, our data point to a critical and novel role for caspase-2 in maintaining bone homeostasis by modulating ROS levels and osteoclast apoptosis during conditions of enhanced oxidative stress that occur during aging
Effect of continuous local dexamethasone on tissue biomechanics and histology after inhalational burn in a preclinical model
Abstract Objective Inhalational burns frequently lead to dysphonia and airway stenosis. We hypothesize local dexamethasone delivery via a novel drug‐eluting electrospun polymer‐mesh endotracheal tube (ETT) reduces biomechanical and histologic changes in the vocal folds in inhalational burn. Methods Dexamethasone‐loaded polymer mesh was electrospun onto ETTs trimmed to transglottic endolaryngeal segments and secured in nine Yorkshire Crossbreed swine with directed 150°C inhalation burns. Uncoated ETTs were implanted in nine additional swine with identical burns. ETT segments were maintained for 3 and 7 days. Vocal fold (VF) structural stiffness was measured using automated‐indentation mapping and compared across groups and to four uninjured controls, and matched histologic assessment performed. Statistical analysis was conducted using two‐way ANOVA with Tukey's post hoc test and Wilcoxon rank‐sum test. Results VF stiffness after burn decreased with longer intubation, from 19.4 (7.6) mN/mm at 3 days to 11.3 (5.2) mN/mm at 7 days (p < .0001). Stiffness similarly decreased with local dexamethasone, from 25.9 (17.2) mN/mm at 3 days to 18.1 (13.0) mN/mm at 7 days (p < .0001). VF stiffness in the dexamethasone group was increased compared to tissues without local dexamethasone (p = .0002), and all groups with ETT placement had higher tissue stiffness at 3 days (p < .001). No significant change in histologic evidence of epithelial ulceration or fibrosis was noted, while an increased degree of inflammation was noted in the dexamethasone group (p = .04). Conclusion Local dexamethasone delivery increases VF stiffness and degree of inflammation compared to uncoated ETTs in an acute laryngeal burn model, reflected in early biomechanical and histologic changes in an inhalational burn model