19,097 research outputs found
Type I interferons in tuberculosis: Foe and occasionally friend
Tuberculosis remains one of the leading causes of mortality worldwide, and, despite its clinical significance, there are still significant gaps in our understanding of pathogenic and protective mechanisms triggered by Mycobacterium tuberculosis infection. Type I interferons (IFN) regulate a broad family of genes that either stimulate or inhibit immune function, having both host-protective and detrimental effects, and exhibit well-characterized antiviral activity. Transcriptional studies have uncovered a potential deleterious role for type I IFN in active tuberculosis. Since then, additional studies in human tuberculosis and experimental mouse models of M. tuberculosis infection support the concept that type I IFN promotes both bacterial expansion and disease pathogenesis. More recently, studies in a different setting have suggested a putative protective role for type I IFN. In this study, we discuss the mechanistic and contextual factors that determine the detrimental versus beneficial outcomes of type I IFN induction during M. tuberculosis infection, from human disease to experimental mouse models of tuberculosis
Derivation of an Abelian effective model for instanton chains in 3D Yang-Mills theory
In this work, we derive a recently proposed Abelian model to describe the
interaction of correlated monopoles, center vortices, and dual fields in three
dimensional SU(2) Yang-Mills theory. Following recent polymer techniques,
special care is taken to obtain the end-to-end probability for a single
interacting center vortex, which constitutes a key ingredient to represent the
ensemble integration.Comment: 18 pages, LaTe
G\"odel-type Spacetimes in Induced Matter Gravity Theory
A five-dimensional (5D) generalized G\"odel-type manifolds are examined in
the light of the equivalence problem techniques, as formulated by Cartan. The
necessary and sufficient conditions for local homogeneity of these 5D manifolds
are derived. The local equivalence of these homogeneous Riemannian manifolds is
studied. It is found that they are characterized by three essential parameters
, and : identical triads correspond to
locally equivalent 5D manifolds. An irreducible set of isometrically
nonequivalent 5D locally homogeneous Riemannian generalized G\"odel-type
metrics are exhibited. A classification of these manifolds based on the
essential parameters is presented, and the Killing vector fields as well as the
corresponding Lie algebra of each class are determined. It is shown that the
generalized G\"odel-type 5D manifolds admit maximal group of isometry
with , or depending on the essential parameters ,
and . The breakdown of causality in all these classes of homogeneous
G\"odel-type manifolds are also examined. It is found that in three out of the
six irreducible classes the causality can be violated. The unique generalized
G\"odel-type solution of the induced matter (IM) field equations is found. The
question as to whether the induced matter version of general relativity is an
effective therapy for these type of causal anomalies of general relativity is
also discussed in connection with a recent article by Romero, Tavakol and
Zalaletdinov.Comment: 19 pages, Latex, no figures. To Appear in J.Math.Phys.(1999
- …