75 research outputs found

    Real-time observation of a coherent lattice transformation into a high-symmetry phase

    Full text link
    Excursions far from their equilibrium structures can bring crystalline solids through collective transformations including transitions into new phases that may be transient or long-lived. Direct spectroscopic observation of far-from-equilibrium rearrangements provides fundamental mechanistic insight into chemical and structural transformations, and a potential route to practical applications, including ultrafast optical control over material structure and properties. However, in many cases photoinduced transitions are irreversible or only slowly reversible, or the light fluence required exceeds material damage thresholds. This precludes conventional ultrafast spectroscopy in which optical excitation and probe pulses irradiate the sample many times, each measurement providing information about the sample response at just one probe delay time following excitation, with each measurement at a high repetition rate and with the sample fully recovering its initial state in between measurements. Using a single-shot, real-time measurement method, we were able to observe the photoinduced phase transition from the semimetallic, low-symmetry phase of crystalline bismuth into a high-symmetry phase whose existence at high electronic excitation densities was predicted based on earlier measurements at moderate excitation densities below the damage threshold. Our observations indicate that coherent lattice vibrational motion launched upon photoexcitation with an incident fluence above 10 mJ/cm2 in bulk bismuth brings the lattice structure directly into the high-symmetry configuration for tens of picoseconds, after which carrier relaxation and diffusion restore the equilibrium lattice configuration.Comment: 22 pages, 4 figure

    Carrier confinement and bond softening in photoexcited bismuth films

    Get PDF
    Femtosecond pump-probe spectroscopy of bismuth thin films has revealed strong dependencies of reflectivity and phonon frequency on film thickness in the range of 25−40 nm. The reflectivity variations are ascribed to distinct electronic structures originating from strongly varying electronic temperatures and proximity of the film thickness to the optical penetration depth of visible light. The phonon frequency is redshifted by an amount that increases with decreasing film thickness under the same excitation fluence, indicating carrier density-dependent bond softening that increases due to suppressed diffusion of carriers away from the photoexcited region in thin films. The results have significant implications for nonthermal melting of bismuth as well as lattice heating due to inelastic electron-phonon scattering.United States. Office of Naval Research (Grant N00014-12-1-0530)National Science Foundation (U.S.) (Grant CHE-1111557

    The persistence of memory in ionic conduction probed by nonlinear optics

    Get PDF
    Predicting practical rates of transport in condensed phases enables the rational design of materials, devices and processes. This is especially critical to developing low-carbon energy technologies such as rechargeable batteries1,2,3. For ionic conduction, the collective mechanisms4,5, variation of conductivity with timescales6,7,8 and confinement9,10, and ambiguity in the phononic origin of translation11,12, call for a direct probe of the fundamental steps of ionic diffusion: ion hops. However, such hops are rare-event large-amplitude translations, and are challenging to excite and detect. Here we use single-cycle terahertz pumps to impulsively trigger ionic hopping in battery solid electrolytes. This is visualized by an induced transient birefringence, enabling direct probing of anisotropy in ionic hopping on the picosecond timescale. The relaxation of the transient signal measures the decay of orientational memory, and the production of entropy in diffusion. We extend experimental results using in silico transient birefringence to identify vibrational attempt frequencies for ion hopping. Using nonlinear optical methods, we probe ion transport at its fastest limit, distinguish correlated conduction mechanisms from a true random walk at the atomic scale, and demonstrate the connection between activated transport and the thermodynamics of information

    The Persistence of Memory in Ionic Conduction Probed by Nonlinear Optics

    Full text link
    Predicting practical rates of ion transport from atomistic descriptors enables the rational design of materials, devices, and processes, which is especially critical to developing low-carbon energy technologies such as rechargeable batteries. The correlated mechanisms of ionic conduction, variation of conductivity with timescale and confinement, and ambiguity in the vibrational origin of translation, the attempt frequency, call for a direct atomic probe of the most fundamental steps of ionic diffusion: ion hops. However, such hops are rare-event large-amplitude translations, and are challenging to excite and detect. Here we use single-cycle terahertz pumps to impulsively trigger ionic hopping in battery solid electrolytes. This is visualized by an induced transient birefringence enabling direct probing of anisotropy in ionic hopping on the picosecond timescale. The relaxation of the transient signal measures the decay of orientational memory, and the production of entropy in diffusion. We extend experimental results using in silico transient birefringence to identify attempt frequencies for ion hopping. Using nonlinear optical methods, we probe ion transport at its fastest limit, distinguish correlated conduction mechanisms from a true random walk at the atomic scale, and demonstrate the connection between activated transport and the thermodynamics of information.Comment: 41 pages, 22 figure

    Cooperative photoinduced metastable phase control in strained manganite films

    Full text link
    A major challenge in condensed matter physics is active control of quantum phases. Dynamic control with pulsed electromagnetic fields can overcome energetic barriers enabling access to transient or metastable states that are not thermally accessible. Here we demonstrate strain-engineered tuning of La2/3Ca1/3MnO3 into an emergent charge-ordered insulating phase with extreme photo-susceptibility where even a single optical pulse can initiate a transition to a long-lived metastable hidden metallic phase. Comprehensive single-shot pulsed excitation measurements demonstrate that the transition is cooperative and ultrafast, requiring a critical absorbed photon density to activate local charge excitations that mediate magnetic-lattice coupling that, in turn, stabilize the metallic phase. These results reveal that strain engineering can tune emergent functionality towards proximal macroscopic states to enable dynamic ultrafast optical phase switching and control

    Ultrafast lattice disordering can be accelerated by electronic collisional forces

    Full text link
    In the prevalent picture of ultrafast structural phase transitions, the atomic motion occurs in a slowly varying potential energy surface determined adiabatically by the fast electrons. However, this ignores non-conservative forces caused by electron-lattice collisions, which can significantly influence atomic motion. Most ultrafast techniques only probe the average structure and are less sensitive to random displacements, and therefore do not detect the role played by non-conservative forces in phase transitions. Here we show that the lattice dynamics of the prototypical insulator-to-metal transition of VO2 cannot be described by a potential energy alone. We use the sample temperature to control the preexisting lattice disorder before ultrafast photoexcitation across the phase transition and our ultrafast diffuse scattering experiments show that the fluctuations characteristic of the rutile metal develop equally fast (120 fs) at initial temperatures of 100 K and 300 K. This indicates that additional non-conservative forces are responsible for the increased lattice disorder. These results highlight the need for more sophisticated descriptions of ultrafast phenomena beyond the Born-Oppenheimer approximation as well as ultrafast probes of spatial fluctuations beyond the average unit cell measured by diffraction

    Determination of nonthermal bonding origin of a novel photoexcited lattice instability in SnSe

    Full text link
    Interatomic forces that bind materials are largely determined by an often complex interplay between the electronic band-structure and the atomic arrangements to form its equilibrium structure and dynamics. As these forces also determine the phonon dispersion, lattice dynamics measurements are often crucial tools for understanding how materials transform between different structures. This is the case for the mono-chalcogenides which feature a number of lattice instabilities associated with their network of resonant bonds and a large tunability in their functional properties. SnSe hosts a novel lattice instability upon above-bandgap photoexcitation that is distinct from the distortions associated with its high temperature phase transition, demonstrating that photoexcitation can alter the interatomic forces significantly different than thermal excitation. Here we report decisive time-resolved X-ray scattering-based measurements of the nonequlibrium lattice dynamics in SnSe. By fitting interatomic force models to the excited-state dispersion, we determine this instability as being primarily due to changes in the fourth-nearest neighbor bonds that connect bilayers, with relatively little change to the intralayer resonant bonds. In addition to providing critical insight into the nonthermal bonding origin of the instability in SnSe, such measurements will be crucial for understanding and controlling materials properties under non-equilibrium conditions
    • …
    corecore