29 research outputs found

    Neurofeedback Using Real-Time Near-Infrared Spectroscopy Enhances Motor Imagery Related Cortical Activation

    Get PDF
    Accumulating evidence indicates that motor imagery and motor execution share common neural networks. Accordingly, mental practices in the form of motor imagery have been implemented in rehabilitation regimes of stroke patients with favorable results. Because direct monitoring of motor imagery is difficult, feedback of cortical activities related to motor imagery (neurofeedback) could help to enhance efficacy of mental practice with motor imagery. To determine the feasibility and efficacy of a real-time neurofeedback system mediated by near-infrared spectroscopy (NIRS), two separate experiments were performed. Experiment 1 was used in five subjects to evaluate whether real-time cortical oxygenated hemoglobin signal feedback during a motor execution task correlated with reference hemoglobin signals computed off-line. Results demonstrated that the NIRS-mediated neurofeedback system reliably detected oxygenated hemoglobin signal changes in real-time. In Experiment 2, 21 subjects performed motor imagery of finger movements with feedback from relevant cortical signals and irrelevant sham signals. Real neurofeedback induced significantly greater activation of the contralateral premotor cortex and greater self-assessment scores for kinesthetic motor imagery compared with sham feedback. These findings suggested the feasibility and potential effectiveness of a NIRS-mediated real-time neurofeedback system on performance of kinesthetic motor imagery. However, these results warrant further clinical trials to determine whether this system could enhance the effects of mental practice in stroke patients

    Association between aphasia severity and brain network alterations after stroke assessed using the electroencephalographic phase synchrony index

    No full text
    Abstract Electroencephalographic synchrony can help assess brain network status; however, its usefulness has not yet been fully proven. We developed a clinically feasible method that combines the phase synchrony index (PSI) with resting-state 19-channel electroencephalography (EEG) to evaluate post-stroke motor impairment. In this study, we investigated whether our method could be applied to aphasia, a common post-stroke cognitive impairment. This study included 31 patients with subacute aphasia and 24 healthy controls. We assessed the expressive function of patients and calculated the PSIs of three motor language-related regions: frontofrontal, left frontotemporal, and right frontotemporal. Then, we evaluated post-stroke network alterations by comparing PSIs of the patients and controls and by analyzing the correlations between PSIs and aphasia scores. The frontofrontal PSI (beta band) was lower in patients than in controls and positively correlated with aphasia scores, whereas the right frontotemporal PSI (delta band) was higher in patients than in controls and negatively correlated with aphasia scores. Evaluation of artifacts suggests that this association is attributed to true synchrony rather than spurious synchrony. These findings suggest that post-stroke aphasia is associated with alternations of two different networks and point to the usefulness of EEG PSI in understanding the pathophysiology of aphasia

    Washout measurement of radioisotope implanted by radioactive beams in the rabbit

    No full text
    Washout of 10C and 11C implanted by radioactive beams in brain and thigh muscle of rabbits was studied. The biological washout effect in living body is important in the range verification system or three-dimensional volume imaging in heavy ion therapy. Positron emitter beams were implanted in the rabbit and the annihilation gamma-rays were measured by in situ positron camera which consisted of a pair of scintillation cameras set on either side of the target. The ROI (region of interest) was set as a two-dimensional position distribution and the time-activity curve of the ROI was measured. Experiments were done under two conditions: live and dead. By comparing the two sets of measurement data, it was deduced that there are at least three components in the washout process. Time-activity curves of both brain and thigh muscle were clearly explained by the three-component model analysis. The three components ratios (and wash out half-lives) were 35 % (2.0 s), 30 % (140 s) and 35 % (10191 s) for brain and 30 % (10 s), 19 % (195 s) and 52 % (3175 s) for thigh muscle. The washout effect must be taken into account for the verification of treatment plans by means of positron camera measurements
    corecore