1,232 research outputs found
Generation of mesoscopic superpositions of a binary Bose-Einstein condensate in a slightly asymmetric double well
A previous publication [Europhysics Letters 78, 10009 (2007)] suggested to
coherently generate mesoscopic superpositions of a two-component Bose-Einstein
condensate in a double well under perfectly symmetric conditions. However,
already tiny asymmetries can destroy the entanglement properties of the ground
state. Nevertheless, even under more realistic conditions, the scheme is
demonstrated numerically to generate mesoscopic superpositions.Comment: 5 pages, 4 figures, preprint-versio
Coherently controlled entanglement generation in a binary Bose-Einstein condensate
Considering a two-component Bose-Einstein condensate in a double-well
potential, a method to generate a Bell state consisting of two spatially
separated condensates is suggested. For repulsive interactions, the required
tunnelling control is achieved numerically by varying the amplitude of a
sinusoidal potential difference between the wells. Both numerical and
analytical calculations reveal the emergence of a highly entangled mesoscopic
state.Comment: 6 pages, 6 figures, epl2.cl
Scaling property of the critical hopping parameters for the Bose-Hubbard model
Recently precise results for the boundary between the Mott insulator phase
and the superfluid phase of the homogeneous Bose-Hubbard model have become
available for arbitrary integer filling factor g and any lattice dimension d >
1. We use these data for demonstrating that the critical hopping parameters
obey a scaling relationship which allows one to map results for different g
onto each other. Unexpectedly, the mean-field result captures the dependence of
the exact critical parameters on the filling factor almost fully. We also
present an approximation formula which describes the critical parameters for d
> 1 and any g with high accuracy.Comment: 5 pages, 5 figures. to appear in EPJ
Collective Oscillations of an Imbalanced Fermi Gas: Axial Compression Modes and Polaron Effective Mass
We investigate the low-lying compression modes of a unitary Fermi gas with
imbalanced spin populations. For low polarization, the strong coupling between
the two spin components leads to a hydrodynamic behavior of the cloud. For
large population imbalance we observe a decoupling of the oscillations of the
two spin components, giving access to the effective mass of the Fermi polaron,
a quasi-particle composed of an impurity dressed by particle-hole pair
excitations in a surrounding Fermi sea. We find , in agreement
with the most recent theoretical predictions.Comment: 4 pages, 4 figures, submitted to PR
A high-resolution 43-year atmospheric hindcast for South America generated with the MPI regional model
An evaluation of the present-day climate in South America simulated by the MPI atmospheric limited area model, REMO, is made. The model dataset was generated by dynamical downscaling from the ECMWF-ERA40 reanalysis and compared to in-situ observations. The model is able to reproduce the low-level summer monsoon circulation but it has some deficiencies in representing the South American Low-Level Jet structure. At upper levels, summer circulation features like the Bolivian High and the associated subtropical jet are well simulated by the model. Sea-level pressure fields are in general well represented by REMO. The model exhibits reasonable skill in representing the general features of the mean seasonal cycle of precipitation. Nevertheless, there is a systematic overestimation of precipitation in both tropical and subtropical regions. Differences between observed and modeled temperature are smaller than 1.5A degrees C over most of the continent, excepting during spring when those differences are quite large. Results also show that the dynamical downscaling performed using REMO introduces some enhancement of the global reanalysis especially in temperature at the tropical regions during the warm season and in precipitation in both the subtropics and extratropics. It is then concluded that REMO can be a useful tool for regional downscaling of global simulations of present and future climates
Patients' Needs for Care in Public Mental Health: Unity and Diversity of Self-Assessed Needs for Care.
PURPOSE: Needs assessment is recognized to be a key element of mental health care. Patients tend to present heterogeneous profiles of needs. However, there is no consensus in previous research about how patients' needs are organized. This study investigates both general and specific dimensions of patients' needs for care.
METHODS: Patients' needs were assessed with ELADEB, an 18-domain self-report scale. The use of a self-assessment scale represents a unique way of obtaining patients' perceptions. A patient-centered psychiatric practice facilitates empowerment as it is based on the patients' personal motivations, needs, and wants. Four seventy-one patients' profiles were analyzed through exploratory factor analysis.
RESULTS: A four-factor bifactor model, including one general factor and three specific factors of needs, was most adequate. Specific factors were (a) "finances" and "administrative tasks"; (b) "transports," "public places," "self-care," "housework," and "food"; and (c) "family," "children," "intimate relationships," and "friendship."
CONCLUSION: As revealed by the general factor, patients expressing urgent needs in some domains are also more susceptible to report urgent needs in several other domains. This general factor relates to high versus low utilizers of public mental healthcare. Patients also present specific needs in life domains, which are organized in three dimensions: management, functional disabilities, and familial and interpersonal relationships. These dimensions relate to the different types of existing social support described in the literature
Fractional photon-assisted tunneling in an optical superlattice: large contribution to particle transfer
Fractional photon-assisted tunneling is investigated both analytically and
numerically for few interacting ultra-cold atoms in the double-wells of an
optical superlattice. This can be realized experimentally by adding periodic
shaking to an existing experimental setup [Phys. Rev. Lett. 101, 090404
(2008)]. Photon-assisted tunneling is visible in the particle transfer between
the wells of the individual double wells. In order to understand the physics of
the photon-assisted tunneling, an effective model based on the rotating wave
approximation is introduced. The validity of this effective approach is tested
for wide parameter ranges which are accessible to experiments in double-well
lattices. The effective model goes well beyond previous perturbation theory
approaches and is useful to investigate in particular the fractional
photon-assisted tunneling resonances. Analytic results on the level of the
experimentally realizable two-particle quantum dynamics show very good
agreement with the numerical solution of the time-dependent Schr\"odinger
equation. Far from being a small effect, both the one-half-photon and the
one-third-photon resonance are shown to have large effects on the particle
transfer.Comment: 9 pages, 11 png-figure
Bose-Einstein condensates in a double well: mean-field chaos and multi-particle entanglement
A recent publication [Phys. Rev. Lett. 100, 140408 (2008)] shows that there
is a relation between mean-field chaos and multi-particle entanglement for BECs
in a periodically shaken double well. 'Schrodinger-cat' like mesoscopic
superpositions in phase-space occur for conditions for which the system
displays mean-field chaos. In the present manuscript, more general
highly-entangled states are investigated. Mean-field chaos accelerates the
emergence of multi-particle entanglement; the boundaries of stable regions are
particularly suited for entanglement generation.Comment: 5 Pages, 5 jpg-figures, to be published in the proceedings of the
LPHYS0
- …