12 research outputs found

    Reduction of claustrophobia during magnetic resonance imaging: methods and design of the "CLAUSTRO" randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Magnetic resonance (MR) imaging has been described as the most important medical innovation in the last 25 years. Over 80 million MR procedures are now performed each year and on average 2.3% (95% confidence interval: 2.0 to 2.5%) of all patients scheduled for MR imaging suffer from claustrophobia. Thus, prevention of MR imaging by claustrophobia is a common problem and approximately 2,000,000 MR procedures worldwide cannot be completed due to this situation. Patients with claustrophobic anxiety are more likely to be frightened and experience a feeling of confinement or being closed in during MR imaging. In these patients, conscious sedation and additional sequences (after sedation) may be necessary to complete the examinations. Further improvements in MR design appear to be essential to alleviate this situation and broaden the applicability of MR imaging. A more open scanner configuration might help reduce claustrophobic reactions while maintaining image quality and diagnostic accuracy.</p> <p>Methods/Design</p> <p>We propose to analyze the rate of claustrophobic reactions, clinical utility, image quality, patient acceptance, and cost-effectiveness of an open MR scanner in a randomized comparison with a recently designed short-bore but closed scanner with 97% noise reduction. The primary aim of this study is thus to determine whether an open MR scanner can reduce claustrophobic reactions, thereby enabling more examinations of claustrophobic patients without incurring the safety issues associated with conscious sedation. In this manuscript we detail the methods and design of the prospective "CLAUSTRO" trial.</p> <p>Discussion</p> <p>This randomized controlled trial will be the first direct comparison of open vertical and closed short-bore MR systems in regards to claustrophobia and image quality as well as diagnostic utility.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT00715806">NCT00715806</a></p

    CT-based thermometry with virtual monoenergetic images by dual-energy of fat, muscle and bone using FBP, iterative and deep learning–based reconstruction

    No full text
    Objectives!#!The aim of this study was to evaluate the sensitivity of CT-based thermometry for clinical applications regarding a three-component tissue phantom of fat, muscle and bone. Virtual monoenergetic images (VMI) by dual-energy measurements and conventional polychromatic 120-kVp images with modern reconstruction algorithms adaptive statistical iterative reconstruction-Volume (ASIR-V) and deep learning image reconstruction (DLIR) were compared.!##!Methods!#!A temperature-regulating water circuit system was developed for the systematic evaluation of the correlation between temperature and Hounsfield units (HU). The measurements were performed on a Revolution CT with gemstone spectral imaging technology (GSI). Complementary measurements were performed without GSI (voltage 120 kVp, current 130-545 mA). The measured object was a tissue equivalent phantom in a temperature range of 18 to 50°C. The evaluation was carried out for VMI at 40 to 140 keV and polychromatic 120-kVp images.!##!Results!#!The regression analysis showed a significant inverse linear dependency between temperature and average HU regardless of ASIR-V and DLIR. VMI show a higher temperature sensitivity compared to polychromatic images. The temperature sensitivities were 1.25 HU/°C (120 kVp) and 1.35 HU/°C (VMI at 140 keV) for fat, 0.38 HU/°C (120 kVp) and 0.47 HU/°C (VMI at 40 keV) for muscle and 1.15 HU/°C (120 kVp) and 3.58 HU/°C (VMI at 50 keV) for bone.!##!Conclusions!#!Dual-energy with VMI enables a higher temperature sensitivity for fat, muscle and bone. The reconstruction with ASIR-V and DLIR has no significant influence on CT-based thermometry, which opens up the potential of drastic dose reductions.!##!Key points!#!‱ Virtual monoenergetic images (VMI) enable a higher temperature sensitivity for fat (8%), muscle (24%) and bone (211%) compared to conventional polychromatic 120-kVp images. ‱ With VMI, there are parameters, e.g. monoenergy and reconstruction kernel, to modulate the temperature sensitivity. In contrast, there are no parameters to influence the temperature sensitivity for conventional polychromatic 120-kVp images. ‱ The application of adaptive statistical iterative reconstruction-Volume (ASIR-V) and deep learning-based image reconstruction (DLIR) has no effect on CT-based thermometry, opening up the potential of drastic dose reductions in clinical applications

    MRI following scoliosis surgery? An analysis of implant heating, displacement, torque, and susceptibility artifacts

    No full text
    Objectives!#!The implant constructs used in scoliosis surgery are often long with a high screw density. Therefore, it is generally believed that magnetic resonance imaging (MRI) should not be carried out after scoliosis surgery, with the result that computed tomography is often preferred despite the ionizing radiation involved. The objective of this study was to evaluate the MRI compatibility of long pedicle-screw-rod constructs at 1.5 T and 3 T using standardized methods of the American Society for Testing and Materials (ASTM).!##!Methods!#!Constructs between 130 and 430 mm long were systematically examined according to the ASTM standards F2182 (radio frequency-induced heating), F2119 (susceptibility artifacts), F2213 (magnetically induced torque), and F2052 (magnetically induced displacement force).!##!Results!#!The maximum heating in the magnetic field was 1.3 K. Heating was significantly influenced by magnetic field strength (p &amp;lt; 0.001), implant length (p = 0.048), and presence of cross-links (p = 0.001). The maximum artifact width for different lengths of the anatomically bent titanium rods with CoCr alloy ranged between 14.77 ± 2.93 mm (TSE) and 17.49 ± 1.82 mm (GRE) for 1.5 T and between 23.67 ± 2.39 mm (TSE) and 27.77 ± 2.37 mm (GRE) for 3 T. TiCP and TiAl showed the smallest and CoCr and CoCr Plus the largest artifact widths. The magnetically induced torque and displacement force were negligible.!##!Conclusions!#!MRI following scoliosis surgery with long implant constructs is safe with the patient in supine position. Although susceptibility artifacts can severely limit the diagnostic value, the examination of other regions is possible.!##!Key points!#!‱ Large spinal implants are not necessarily a contraindication for MRI; MR conditional status can be examined according to the ASTM standards F2182, F2119, F2213, and F2052. ‱ A metallic pedicle-screw-rod system could be reliably and safely examined in all combinations of length (130 to 430 mm), configuration, and material in a

    Reference values for digital X-ray radiogrammetry parameters in children and adolescents in comparison to estimates in patients with distal radius fractures.

    No full text
    The first objective of this study was to determine normative digital X-ray radiogrammetry (DXR) values, based on original digital images, in a pediatric population (aged 6-18 years). The second aim was to compare these reference data with patients suffering from distal radius fractures, whereas both cohorts originated from the same geographical region and were evaluated using the same technical parameters as well as inclusion and exclusion criteria. DXR-BMD and DXR-MCI of the metacarpal bones II-IV were assessed on standardized digital hand radiographs, without printing or scanning procedures. DXR parameters were estimated separately by gender and among six age groups; values in the fracture group were compared to age- and gender-matched normative data using Student's t tests and Z scores. In the reference cohort (150 boys, 138 girls), gender differences were found in bone mineral density (DXR-BMD), with higher values for girls from 11 to 14 years and for boys from 15 to 18 years (p < 0.05). Girls had higher normative metacarpal index (DXR-MCI) values than boys, with significant differences at 11-14 years (p < 0.05). In the case-control investigation, the fracture group (95 boys, 69 girls) presented lower DXR-BMD at 15-18 years in boys and 13-16 years in girls vs. the reference cohort (p < 0.05); DXR-MCI was lower at 11-18 years in boys and 11-16 years in girls (p < 0.05). Mean Z scores in the fracture group for DXR-BMD were -0.42 (boys) and -0.46 (girls), and for DXR-MCI were -0.51 (boys) and -0.53 (girls). These findings indicate that the fully digital DXR technique can be accurately applied in pediatric populations ≄ 6 years of age. The lower DXR-BMD and DXR-MCI values in the fracture group suggest promising early identification of individuals with increased fracture risk, without the need for additional radiation exposure, enabling the initiation of prevention strategies to possibly reduce the incidence of osteoporosis later in life

    Targeting the Tumor Microenvironment with Fluorescence-Activatable Bispecific Endoglin/Fibroblast Activation Protein Targeting Liposomes

    No full text
    Liposomes are biocompatible nanocarriers with promising features for targeted delivery of contrast agents and drugs into the tumor microenvironment, for imaging and therapy purposes. Liposome-based simultaneous targeting of tumor associated fibroblast and the vasculature is promising, but the heterogeneity of tumors entails a thorough validation of suitable markers for targeted delivery. Thus, we elucidated the potential of bispecific liposomes targeting the fibroblast activation protein (FAP) on tumor stromal fibroblasts, together with endoglin which is overexpressed on tumor neovascular cells and some neoplastic cells. Fluorescence-quenched liposomes were prepared by hydrating a lipid film with a high concentration of the self-quenching near-infrared fluorescent dye, DY-676-COOH, to enable fluorescence detection exclusively upon liposomal degradation and subsequent activation. A non-quenched green fluorescent phospholipid was embedded in the liposomal surface to fluorescence-track intact liposomes. FAP- and murine endoglin-specific single chain antibody fragments were coupled to the liposomal surface, and the liposomal potentials validated in tumor cells and mice models. The bispecific liposomes revealed strong fluorescence quenching, activatability, and selectivity for target cells and delivered the encapsulated dye selectively into tumor vessels and tumor associated fibroblasts in xenografted mice models and enabled their fluorescence imaging. Furthermore, detection of swollen lymph nodes during intra-operative simulations was possible. Thus, the bispecific liposomes have potentials for targeted delivery into the tumor microenvironment and for image-guided surgery
    corecore