812 research outputs found

    Recovering 3D structural properties of galaxies from SDSS-like photometry

    Full text link
    Because of the 3D nature of galaxies, an algorithm for constructing spatial density distribution models of galaxies on the basis of galaxy images has many advantages over surface density distribution approximations. We present a method for deriving spatial structure and overall parameters of galaxies from images and estimate its accuracy and derived parameter degeneracies on a sample of idealised model galaxies. The test galaxies consist of a disc-like component and a spheroidal component with varying proportions and properties. Both components are assumed to be axially symmetric and coplanar. We simulate these test galaxies as if observed in the SDSS project through ugriz filters, thus gaining a set of realistically imperfect images of galaxies with known intrinsic properties. These artificial SDSS galaxies were thereafter remodelled by approximating the surface brightness distribution with a 2D projection of a bulge+disc spatial distribution model and the restored parameters were compared to the initial ones. Down to the r-band limiting magnitude 18, errors of the restored integral luminosities and colour indices remain within 0.05 mag and errors of the luminosities of individual components within 0.2 mag. Accuracy of the restored bulge-to-disc ratios (B/D) is within 40% in most cases, and becomes worse for galaxies with low B/D, but the general balance between bulges and discs is not shifted systematically. Assuming that the intrinsic disc axial ratio is < 0.3, the inclination angles can be estimated with errors < 5deg for most of the galaxies with B/D < 2 and with errors < 15deg up to B/D = 6. Errors of the recovered sizes of the galactic components are below 10% in most cases. In general, models of disc components are more accurate than models of spheroidal components for geometrical reasons.Comment: 15 pages, 13 figures, accepted for publication in RA

    Landscape equivalent of the shoving model

    Get PDF
    It is shown that the shoving model expression for the average relaxation time of viscous liquids follows largely from a classical "landscape" estimation of barrier heights from curvature at energy minima. The activation energy involves both instantaneous bulk and shear moduli, but the bulk modulus contributes less than 8% to the temperature dependence of the activation energy. This reflects the fact that the physics of the two models are closely related.Comment: 4 page

    Excitons in a Photosynthetic Light-Harvesting System: A Combined Molecular Dynamics/Quantum Chemistry and Polaron Model Study

    Get PDF
    The dynamics of pigment-pigment and pigment-protein interactions in light-harvesting complexes is studied with a novel approach which combines molecular dynamics (MD) simulations with quantum chemistry (QC) calculations. The MD simulations of an LH-II complex, solvated and embedded in a lipid bilayer at physiological conditions (with total system size of 87,055 atoms) revealed a pathway of a water molecule into the B800 binding site, as well as increased dimerization within the B850 BChl ring, as compared to the dimerization found for the crystal structure. The fluctuations of pigment (B850 BChl) excitation energies, as a function of time, were determined via ab initio QC calculations based on the geometries that emerged from the MD simulations. From the results of these calculations we constructed a time-dependent Hamiltonian of the B850 exciton system from which we determined the linear absorption spectrum. Finally, a polaron model is introduced to describe quantum mechanically both the excitonic and vibrational (phonon) degrees of freedom. The exciton-phonon coupling that enters into the polaron model, and the corresponding phonon spectral function are derived from the MD/QC simulations. It is demonstrated that, in the framework of the polaron model, the absorption spectrum of the B850 excitons can be calculated from the autocorrelation function of the excitation energies of individual BChls, which is readily available from the combined MD/QC simulations. The obtained result is in good agreement with the experimentally measured absorption spectrum.Comment: REVTeX3.1, 23 pages, 13 (EPS) figures included. A high quality PDF file of the paper is available at http://www.ks.uiuc.edu/Publications/Papers/PDF/DAMJ2001/DAMJ2001.pd

    Preventing Contamination During Transesophageal Echocardiography in the Face of the Coronavirus Disease 2019 (COVID-19) Pandemic: A Glo Germ Experience

    Get PDF
    As cases of coronavirus disease 2019 (COVID-19) continue to rise, there have been increases in innovation and development of techniques to limit exposure and contamination of healthcare workers. In a recent letter to the editor, Dr. Jain described a novel method of minimizing contamination during transesophageal echocardiography (TEE). He proposed using an ultrasound probe cover over the TEE probe to minimize contamination of oral secretions from the probe to the TEE and anesthesia machines. We used this novel method with a COVID-19 positive patient presenting for emergency repair of an acute type-aortic dissection. Our only modification was to tape the open end of the probe cover to the base of the TEE handle, since the standard ultrasound covers at our institution are shorter in length (Fig 1). Follow-up with all personnel involved in the surgery ensured that no new cases of COVID-19 occurred
    corecore