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ABSTRACT 
 

An impurity migration model for systems with material 
interfaces is applied to Cu migration in CdTe solar cells. In 
the model, diffusion fluxes are calculated from the Cu 
chemical potential gradient. Inputs to the model include Cu 
diffusivities, solubilities, and segregation enthalpies in 
CdTe, CdS and contact materials. The model yields 
transient and equilibrium Cu distributions in CdTe devices 
during device processing and under field-deployed 
conditions. Preliminary results for Cu migration in CdTe 
photovoltaic devices using available diffusivity and 
solubility data from the literature show that Cu segregates 
in the CdS, a phenomenon that is commonly observed in 
devices after back-contact processing and/or stress 
conditions. 
 

INTRODUCTION 
 

It is well known that Cu plays an important role in 
CdTe-based solar cells by helping to form an Ohmic back 
contact (BC). (See, e.g., references in Ref. [1].) Also, Cu 
migration in CdTe solar cells has been implicated in 
device degradation [2-6]. However, the role of Cu in 
degradation remains unclear, in part because the kinetics 
and equilibria of Cu migration phenomena in CdTe 
photovoltaic (PV) devices are not well understood. Cu 
incorporation in CdTe devices is generally controlled 
through time-consuming empirical optimization 
procedures. Similarly, device degradation issues related to 
Cu migration have typically relied on empirical approaches 
[7]. The present work provides a simple physical model for 
Cu migration in CdTe devices that can be used to 
understand and potentially optimize Cu incorporation 
processes.  
 

IMPURITY MIGRATION MODEL 
 

A general impurity migration model has been 
developed recently at the National Renewable Energy 
Laboratory (NREL) [8]. The model applies to systems with 
material interfaces (e.g., CdTe/CdS) that lead to 
discontinuities in the properties that control impurity 
segregation; diffusivity, solubility, and segregation 
enthalpy. The impurity migration model derived in Ref. [8] 
is reviewed here briefly. Consider a system where 
individual atomic planes perpendicular to the diffusion 
coordinate x are indexed by subscript i. The free energy is 
calculated by summing the product of particle number and 
chemical potential over all species and planes:  
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Subscript p denotes the local matrix (CdTe, CdS, etc.) 

in which Cu is diffusing. Species are labeled by , 
and the number of sites per plane is . The species-s 

mole fraction in plane i is . For simplicity, the ideal-

solution model is used for and . Now a chemical 

potential, , is defined for plane i that accounts for 

both species, subject to the complementarity 
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Physically, is the energy difference that 

accompanies the exchange of a matrix atom p with a Cu 
atom in plane i. The relationship between  and the 

Cu migration potential is illustrated in Fig. 1, and is 
summarized by the parameterization 
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Figure 1. Schematic illustration of the ideal-solution Cu 
migration potential near a hypothetical material interface. 
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Equation (3) permits the diffusion activation energy, , 

and the local potential energy offset, , to be written 

as functions of position rather than concentration. 

i
DE

i
pCu-φ

From Fig. 1, the Cu segregation enthalpy between 
adjacent layers in the thin-film stack is given by the Cu 
migration potential difference across the interface: 
 

'-Cu-Cuseg pp HHH Δ−Δ= .    (4) 
 

The layer-i chemical potential, Eq. (2), describes a 
discretized system of atomic planes. Dropping the i 
subscripts yields a continuum description. The Cu flux is 
given by the standard phenomenological relation: 
 

x
MCJ p

∂

∂
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μ
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where is the Cu concentration. The Cu flux acts to 
minimize the free energy with respect to the Cu 
concentration profile, and it vanishes at equilibrium. 
Requiring equal and opposite Cu and matrix fluxes leads 
to a generalization of the Einstein relation [9] to non-dilute 
systems [8], in which mobility (M) is related to diffusivity 
(D) through 
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0C  is the Cu solubility, and  is the matrix concentration 

in the Cu-available sites, defined by . 
Dropping the unnecessary ‘Cu’ subscripts and assuming 
an Arrhenius form for D leads to 
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and the continuity equation is  
 

x
J

t
C
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In any uniform layer, Eq. (7) reduces to 

( )xCDJ ∂∂−= , Fick’s first law of diffusion. Equations (7) 
and (8) can be solved numerically for the Cu concentration 
profile in the device for any initial conditions. Required 
inputs include the Cu diffusivities, solubilities, and 
segregation enthalpies for each layer. The device model 
consists of a BC, CdTe, CdS, and a front contact (FC). A 
thicker-than-typical CdS layer (0.5 μm) is chosen to make 
this layer more visible in the simulation plots. 

 
SURVEY OF DIFFUSIVITY AND SOLUBILITY DATA 

 
Solubility and diffusivity data for Cu in CdTe and CdS 

are summarized in Table I. Cu solubility and diffusivity 

data are not available for ZnTe. However, SIMS 
measurements indicate that high levels of Cu can be 
incorporated in sputtered ZnTe:Cu BCs [10-12]. Therefore, 
for preliminary modeling purposes, a low solubility 
activation energy was chosen (0.11 eV) for the BC, such 
that [ ] 321max

BC cm10Cu −>  for T > 20 ºC. Despite the lack of 
solubility and diffusivity data for ZnTe:Cu, this allows the 
BC layer to act as Cu reservoir in the simulation, and is 
consistent with SIMS measurements of sputtered ZnTe:Cu 
BCs [10-12].  The CdTe:Cu diffusivity parameters were 
also used for the BC, again due to the lack of data. 
Arbitrary low values were chosen for the solubility and 
diffusivity in the FC layer. This leads to low Cu segregation 
levels in the FC layer in the simulations, but has little effect 
on the Cu profile in other layers of the device. 
 
Table I. Diffusivity and solubility data for Cu in CdTe and in 
CdS. Values used in simulations are in bold type. Single-
crystal based measurements are denoted by SC; 
measurements from polycrystalline films are indicated by 
PX. Diffusion mode refers to cases described in the text. 
 

CdTe:Cu diffusivity data 

D0 (cm2 s-1) ED (eV) 
 
Ref. 

SC or 
PX 

Diffusion 
mode 

1.70E-06 0.24 [13]   
6.65E-05 0.57 [14] SC low 
7.30E-07 0.33 [15]   
1.30E-06 0.29 [16] PX high 
8.20E-08 0.64 [17]   
3.70E-04 0.67 [18]   
9.57E-04 0.7 [19]   

CdTe:Cu solubility data 
C0 (cm-3) Ea (eV) Ref.   
1.56E+23 0.55 [14] SC low 
~2E+17 ~0 [16] PX high 
3.73E+24 0.68 [20]   

CdS:Cu diffusivity data 
D0 (cm2 s-1) ED (eV) Ref.   
1.20E-02 1.05 [21] SC  
2.10E-03 0.96 [22] SC  
1.60E-03 0.77 [23] SC  
— 0.95 [24] SC  
6.00E-09 0.5 [25] PX  
— 1.0 [26] SC  

CdS:Cu solubility data 
C0 (cm-3) Ea (eV) Ref.   
8.00E+21 0.27 [25] PX  
6.60E+22 0.505 [22] SC  

 
It has been pointed out that there appear to be two 

mechanisms for Cu diffusion in CdTe: via Cu atoms on Cd 
lattice sites (CuCd), and via interstitial Cu ions ( ) [16, 
18]. Other workers have suggested that the dominant 
diffusion mechanism is a neutral Cu interstitial Cd vacancy 
(Cui-VCd) complex [14, 27]. Single-crystal measurements 
indicate that the CuCd (or Cui-VCd) solubility is significantly 
higher than that of , and that CuCd has the lower 

diffusivity [14, 18]. The solubility is apparently nearly 

+
iCu

+
iCu

+
iCu

 2



constant with temperature [14]. Data for both mechanisms 
are used in this study for comparative purposes: the 
diffusivity from Ref. [14] is the ‘low-diffusivity’ case, and 
that from Ref. [16] is ‘high-diffusivity’ case. The 
corresponding solubilities are also used. 

It is very likely that grain-boundaries in polycrystalline 
films significantly enhance the diffusivity and solubility of 
Cu compared to in single-crystal samples. Currently, there 
is not sufficient data available in the literature to 
definitively quantify these effects in CdTe PV devices. 
Nevertheless, it should be noted that the high-diffusivity 
case referred to in this work is based on measurements of 
polycrystalline films, whereas the low-diffusivity case is 
based on single-crystal measurements. Therefore, the 
high-diffusivity case is probably more relevant to Cu 
migration in thin-film based CdTe solar cells. For CdS, 
there is only one set of diffusivity and solubility 
measurements available for polycrystalline thin films [25]. 
Therefore, solubility and diffusivity data for the simulations 
were chosen from this study. 

The segregation enthalpy, Eq. (4), depends on the 
diffusivities and local potential-energy offsets for Cu in 
each material layer, and therefore must be measured 
independently for each pseudo-binary diffusion couple. 
These data are not presently available, so the simulations 
assume that the corresponding term in Eq. (7) is zero. 

 
Cu MIGRATION SIMULATION RESULTS 

 
For all simulations, the initial Cu concentration was 

set to 1021 cm-3 in the BC layer, and zero elsewhere. For 
the device-processing simulation, the temperature was 
ramped from room temperature to the indicated 
temperatures at 20 ºC min-1, held at temperature for a time 
equal to the duration of the temperature ramp, then 
ramped back to room temperature. These preliminary 
simulation results are shown in Figs. 2 and 3. 

 
Figure 2. Device-processing simulation of Cu migration in 
CdTe PV device for the high-diffusivity case.  

 
The extent of Cu segregation increases with 

annealing temperature, due to increased CdTe:Cu 
diffusivity and CdS:Cu solubility. There are also Cu-
depleted regions near the BC interface for the low-
diffusivity case. This results from Cu re-segregation to the 
BC during the ramp back to room temperature, caused by 
the corresponding decrease of Cu solubility in CdTe. In 

spite of this phenomenon, the simulations show that a 
metastable Cu concentration in excess of the Cu solubility 
can be established during BC processing: the CuCd 
solubility is 5×1013 cm-3 at 20 ºC [14].  

 
Figure 3. Device-processing simulation of Cu migration in 
CdTe PV device for the low-diffusivity case. 

 
Figures 4 and 5 show the results from the preliminary 

long-term stability simulations, for T = 65 ºC.  

 
Figure 4. Long-term stability simulation of Cu migration in 
CdTe PV device for the high-diffusivity case. 

 
Figure 5. Long-term stability simulation of Cu migration in 
CdTe PV device for the low-diffusivity case. 

 
For these results, it is noteworthy that high levels of 

Cu in the CdS layer are established relatively quickly. For 
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the high-diffusivity case, the detailed temporal evolution of 
the Cu profile (not shown for lack of space) show that 
equilibrium in the CdTe and CdS layers is established 
within about 20 weeks at 65 ºC. Similarly, for the low-
diffusivity case, a large Cu concentration develops in the 
CdS after about 5 years, and equilibrium is established in 
10-15 years. 

As was observed for the CdTe layer, the Cu levels in 
the CdS layer in the device-processing simulation again 
exceed the solubility (cf. Figs. 2 and 4 and Figs. 3 and 5). 
Therefore, in actual devices, it is possible under some 
conditions that a gradual decrease in Cu concentration in 
the CdS layer could be observed following BC processing. 

Cu accumulation in the CdS layer is observed in all of 
the simulations, consistent with observations of real 
devices [4]. It is apparent from the model that both 
enhanced solubility and decreased diffusivity of Cu in CdS 
compared to CdTe contribute to this phenomenon. Without 
more systematic diffusion, solubility and migration 
measurements on thin-film materials (and diffusion 
couples) used in CdTe devices, it will be difficult to 
address this issue definitively. Nevertheless, in the 
simulations reported here it appears that solubility is the 
primary driving force for Cu accumulation in the CdS layer. 
This observation is consistent with the interpretation of 
enhanced grain-boundary segregation in CdS films, which 
typically have smaller grains and therefore more grain-
boundary surface area per unit volume than CdTe films, is 
responsible for Cu accumulation in this layer. 

For comparison to the simulation results, a SIMS 
depth profile of Cu obtained from a CdTe solar cell is 
shown in Fig. 6. The cell was fabricated on Tec 15 glass 
with vapor-transport-deposited CdTe/CdS absorber and 
vapor-CdCl2 processed. The back contact was a sputter-
deposited bi-layer of ZnTe:Cu followed by Ti, deposited at 
temperatures of ~325 °C and ~185°C, respectively. The Ti 
was removed prior to SIMS analysis. 

 
Figure 6. Typical SIMS profile of a ZnTe:Cu back-
contacted device after back-contact processing. 

 
The Cu distribution measured by SIMS is similar to 

the simulated high-diffusivity case. The Cu concentration 
in the simulation is roughly one order of magnitude lower, 
and the concentration in the CdS is somewhat higher, than 
in the SIMS profile, indicating that the parameters used in 
the model are not quite correct for these particular thin-
films. For example, the effective solubilities in these layers 

are highly dependent on grain size. Additionally, the 
kinetic and thermodynamic parameters controlling 
diffusivity and segregation in these thin-film layers might 
be influenced by the particular growth parameters, or other 
processing steps such as the CdCl2 treatment. It is also 
important to note that artifacts in SIMS data, such as 
sputter-induced roughening or other morphological effects, 
are not accounted for in the migration model. These types 
of artifacts in SIMS data tend to broaden profiled, whereas 
the model assumes abrupt interfaces. Nevertheless, there 
is sufficient qualitative (or semi-quantitative) agreement 
between the simulations and SIMS profiles of actual 
devices to suggest that the segregation model captures all 
relevant thermodynamic driving forces for Cu migration. 
Further experimental data and simulations will allow the 
model and material parameters to be refined. 
 

SUMMARY AND CONCLUSIONS 
 

An impurity migration model has been applied to Cu 
in CdTe PV devices using available diffusivity and 
solubility data. The device-processing simulations agree 
qualitatively with observations of Cu segregation in the 
CdS layer [4, 10-12], an effect attributed primarily to 
enhanced grain-boundary segregation in fine-grained CdS 
films. For the diffusivity measured in single-crystal CdTe 
[14], long-term stability simulations show that Cu 
segregation to the CdS layer equilibrates within about 15 
years. The much faster diffusivity measured in 
polycrystalline CdTe leads to a Cu profile in the device 
equilibrates within weeks. These timescales are clearly 
relevant to discussions of device degradation in the field. 
However, more experiments are needed to definitively 
identify the dominant Cu diffusion mechanism in CdTe 
thin-films used for PV applications.  

In order to verify and refine the Cu migration model, it 
would be extremely useful to measure (or re-measure) Cu 
diffusivities, solubilities, and segregation enthalpies for 
relevant thin-film PV materials. Grain boundaries are 
known to affect both the diffusivity and solubility of Cu in 
CdTe [2], and similar behavior is expected in CdS, ZnTe, 
etc. Therefore these properties must be measured in 
actual thin-film PV materials. 
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