19 research outputs found

    Robust post-stall perching with a simple fixed-wing glider using LQR-Trees

    Get PDF
    Birds routinely execute post-stall maneuvers with a speed and precision far beyond the capabilities of our best aircraft control systems. One remarkable example is a bird exploiting post-stall pressure drag in order to rapidly decelerate to land on a perch. Stall is typically associated with a loss of control authority, and it is tempting to attribute this agility of birds to the intricate morphology of the wings and tail, to their precision sensing apparatus, or their ability to perform thrust vectoring. Here we ask whether an extremely simple fixed-wing glider (no propeller) with only a single actuator in the tail is capable of landing precisely on a perch from a large range of initial conditions. To answer this question, we focus on the design of the flight control system; building upon previous work which used linear feedback control design based on quadratic regulators (LQR), we develop nonlinear feedback control based on nonlinear model-predictive control and 'LQR-Trees'. Through simulation using a flat-plate model of the glider, we find that both nonlinear methods are capable of achieving an accurate bird-like perching maneuver from a large range of initial conditions; the 'LQR-Trees' algorithm is particularly useful due to its low computational burden at runtime and its inherent performance guarantees. With this in mind, we then implement the 'LQR-Trees' algorithm on real hardware and demonstrate a 95 percent perching success rate over 147 flights for a wide range of initial speeds. These results suggest that, at least in the absence of significant disturbances like wind gusts, complex wing morphology and sensing are not strictly required to achieve accurate and robust perching even in the post-stall flow regime.United States. Office of Naval Research. Multidisciplinary University Research Initiative (N00014-10-1-0951)National Science Foundation (U.S.) (Award IIS-0915148

    A direct method for trajectory optimization of rigid bodies through contact

    Get PDF
    Direct methods for trajectory optimization are widely used for planning locally optimal trajectories of robotic systems. Many critical tasks, such as locomotion and manipulation, often involve impacting the ground or objects in the environment. Most state-of-the-art techniques treat the discontinuous dynamics that result from impacts as discrete modes and restrict the search for a complete path to a specified sequence through these modes. Here we present a novel method for trajectory planning of rigid-body systems that contact their environment through inelastic impacts and Coulomb friction. This method eliminates the requirement for a priori mode ordering. Motivated by the formulation of multi-contact dynamics as a Linear Complementarity Problem for forward simulation, the proposed algorithm poses the optimization problem as a Mathematical Program with Complementarity Constraints. We leverage Sequential Quadratic Programming to naturally resolve contact constraint forces while simultaneously optimizing a trajectory that satisfies the complementarity constraints. The method scales well to high-dimensional systems with large numbers of possible modes. We demonstrate the approach on four increasingly complex systems: rotating a pinned object with a finger, simple grasping and manipulation, planar walking with the Spring Flamingo robot, and high-speed bipedal running on the FastRunner platform.United States. Defense Advanced Research Projects Agency. Maximum Mobility and Manipulation Program (Grant W91CRB-11-1-0001)National Science Foundation (U.S.) (Grant IIS-0746194)National Science Foundation (U.S.) (Grant IIS-1161909)National Science Foundation (U.S.) (Grant IIS-0915148

    Convex Optimization of Nonlinear Feedback Controllers via Occupation Measures

    Get PDF
    In this paper, we present an approach for designing feedback controllers for polynomial systems that maximize the size of the time-limited backwards reachable set (BRS). We rely on the notion of occupation measures to pose the synthesis problem as an infinite dimensional linear program (LP) and provide finite dimensional approximations of this LP in terms of semidefinite programs (SDPs). The solution to each SDP yields a polynomial control policy and an outer approximation of the largest achievable BRS. In contrast to traditional Lyapunov based approaches, which are non-convex and require feasible initialization, our approach is convex and does not require any form of initialization. The resulting time-varying controllers and approximated backwards reachable sets are well-suited for use in a trajectory library or feedback motion planning algorithm. We demonstrate the efficacy and scalability of our approach on four nonlinear systems.United States. Office of Naval Research. Multidisciplinary University Research Initiative (Grant N00014-09-1-1051)National Science Foundation (U.S.) (Contract IIS-1161679)Thomas and Stacey Siebel Foundatio

    La medici贸n internacional de la transferencia tecnol贸gica. Problemas econ贸micos y metodol贸gicos

    Get PDF
    La medida de la transferencia tecnol贸gica es uno de los principales indicadores del crecimiento tecnol贸gico. Diferentes organizaciones internacionales, como el F.M.I., tratan esta cuesti贸n. Este trabajo considera las dificultades para encontrar buenos sistemas de medici贸n.Transparentzia teknologikoaren neurria hazkunde teknologikoaren adierazle nagusietarikoa da. Nazioarteko erakunde batzuk, hala nola F.M.I., arazo horretaz arduratzen ari dira. Lan honetan neurketa-sistema egokiak aurkitzeko zailtasunak ukitzen dira.Measurement of technological transference is one of the main economical indicator of the technological growth. Different International Organizations, like I.M.F. deals with this issue. This paper considers the difficulties about finding out good measurement systems

    Simulation-based LQR-trees with input and state constraints

    No full text
    We present an algorithm that probabilistically covers a bounded region of the state space of a nonlinear system with a sparse tree of feedback stabilized trajectories leading to a goal state. The generated tree serves as a lookup table control policy to get any reachable initial condition within that region to the goal. The approach combines motion planning with reasoning about the set of states around a trajectory for which the feedback policy of the trajectory is able to stabilize the system. The key idea is to use a random sample from the bounded region for both motion planning and approximation of the stabilizable sets by falsification; this keeps the number of samples and simulations needed to generate covering policies reasonably low. We simulate the nonlinear system to falsify the stabilizable sets, which allows enforcing input and state constraints. Compared to the algebraic verification using sums of squares optimization in our previous work, the simulation-based approximation of the stabilizable set is less exact, but considerably easier to implement and can be applied to a broader range of nonlinear systems. We show simulation results obtained with model systems and study the performance and robustness of the generated policies

    Localizing external contact using proprioceptive sensors: The Contact Particle Filter

    No full text
    In order for robots to interact safely and intelligently with their environment they must be able to reliably estimate and localize external contacts. This paper introduces CPF, the Contact Particle Filter, which is a general algorithm for detecting and localizing external contacts on rigid body robots without the need for external sensing. CPF finds external contact points that best explain the observed external joint torque, and returns sensible estimates even when the external torque measurement is corrupted with noise. We demonstrate the capability of the CPF to track multiple external contacts on a simulated Atlas robot, and compare our work to existing approaches. Keywords: Robot sensing systems; Collision avoidance; Legged locomotion; Torque; Observer

    Path planning in 1000+ dimensions using a task-space Voronoi bias

    No full text
    The reduction of the kinematics and/or dynamics of a high-DOF robotic manipulator to a low-dimension ldquotask spacerdquo has proven to be an invaluable tool for designing feedback controllers. When obstacles or other kinodynamic constraints complicate the feedback design process, motion planning techniques can often still find feasible paths, but these techniques are typically implemented in the high-dimensional configuration (or state) space. Here we argue that providing a Voronoi bias in the task space can dramatically improve the performance of randomized motion planners, while still avoiding non-trivial constraints in the configuration (or state) space. We demonstrate the potential of task-space search by planning collision-free trajectories for a 1500 link arm through obstacles to reach a desired end-effector position.United States. Defense Advanced Research Projects Agency (Learning Locomotion program (AFRL contract # FA8650-05-C-7262)

    A Quadratic Regulator-Based Heuristic for Rapidly Exploring State Space

    No full text
    Kinodynamic planning algorithms like Rapidly-Exploring Randomized Trees (RRTs) hold the promise of finding feasible trajectories for rich dynamical systems with complex, nonconvex constraints. In practice, these algorithms perform very well on configuration space planning, but struggle to grow efficiently in systems with dynamics or differential constraints. This is due in part to the fact that the conventional distance metric, Euclidean distance, does not take into account system dynamics and constraints when identifying which node in the existing tree is capable of producing children closest to a given point in state space. We show that an affine quadratic regulator (AQR) design can be used to approximate the exact minimum-time distance pseudometric at a reasonable computational cost. We demonstrate improved exploration of the state spaces of the double integrator and simple pendulum when using this pseudometric within the RRT framework, but this improvement drops off as systems' nonlinearity and complexity increase. Future work includes exploring methods for approximating the exact minimum-time distance pseudometric that can reason about dynamics with higher-order terms

    Towards feature selection in actor-critic algorithms

    No full text
    URL to paper listed on conference pageChoosing features for the critic in actor-critic algorithms with function approximation is known to be a challenge. Too few critic features can lead to degeneracy of the actor gradient, and too many features may lead to slower convergence of the learner. In this paper, we show that a wellstudied class of actor policies satisfy the known requirements for convergence when the actor features are selected carefully. We demonstrate that two popular representations for value methods - the barycentric interpolators and the graph Laplacian proto-value functions - can be used to represent the actor in order to satisfy these conditions. A consequence of this work is a generalization of the proto-value function methods to the continuous action actor-critic domain. Finally, we analyze the performance of this approach using a simulation of a torque-limited inverted pendulum
    corecore