175 research outputs found

    Fingolimod: therapeutic mechanisms and ocular adverse effects.

    Get PDF
    Fingolimod is an oral immunomodulating drug used in the management of relapsing-remitting multiple sclerosis (RRMS). We aim to review the published literature on ocular manifestations of fingolimod therapy and their possible underlying mechanisms. The therapeutic effects of fingolimod are mediated via sphingosine receptors, which are found ubiquitously in various organs, including lymphoid cells, central nervous system, cardiac myocytes, and smooth muscle cells. Fingolimod-associated macular oedema (FAME) is the most common ocular side effect but retinal haemorrhages and retinal vein occlusion can occur. The visual consequences appear to be mild and, in cases of FAME, resolution is often attained with discontinuation of therapy. However, in cases of retinal vein occlusion, discontinuation of fingolimod alone may not be sufficient and intra-vitreal therapy may be required. We also propose a pragmatic service pathway for monitoring patients on fingolimod therapy, which includes stratifying them by risk and visual acuity

    PsRBR1 encodes a pea retinoblastoma-related protein that is phosphorylated in axillary buds during dormancy-to-growth transition

    Get PDF
    In intact plants, cells in axillary buds are arrested at the G1 phase of the cell cycle during dormancy. In mammalian cells, the cell cycle is suppressed at the G1 phase by the activities of retinoblastoma tumor suppressor gene (RB) family proteins, depending on their phosphorylation state. Here, we report the isolation of a pea cDNA clone encoding an RB-related protein (PsRBR1, Accession No. AB012024) with a high degree of amino acid conservation in comparison with RB family proteins. PsRBR1 protein was detected as two polypeptides using an anti-PsRBR1 antibody in dormant axillary buds, whereas it was detected as three polypeptides, which were the same two polypeptides and another larger polypeptide 2 h after terminal decapitation. Both in vitro-synthesized PsPRB1 protein and lambda protein phosphatase-treated PsRBR1 protein corresponded to the smallest polypeptide detected by anti-PsRBR1 antibody, suggesting that the three polypeptides correspond to non-phosphorylated form of PsRBR1 protein, and lower- and higher-molecular mass forms of phosphorylated PsRBR1 protein. Furthermore, in vivo labeling with [32P]-inorganic phosphate indicated that PsRBR1 protein was more phosphorylated before mRNA accumulation of cell cycle regulatory genes such as PCNA. Together these findings suggest that dormancy-to-growth transition in pea axillary buds is regulated by molecular mechanisms of cell cycle control similar to those in mammals, and that the PsRBR1 protein has an important role in suppressing the cell cycle during dormancy in axillary buds

    MUC1-associated proliferation signature predicts outcomes in lung adenocarcinoma patients

    Get PDF
    Background: MUC1 protein is highly expressed in lung cancer. The cytoplasmic domain of MUC1 (MUC1-CD) induces tumorigenesis and resistance to DNA-damaging agents. We characterized MUC1-CD-induced transcriptional changes and examined their significance in lung cancer patients. Methods: Using DNA microarrays, we identified 254 genes that were differentially expressed in cell lines transformed by MUC1-CD compared to control cell lines. We then examined expression of these genes in 441 lung adenocarcinomas from a publicly available database. We employed statistical analyses independent of clinical outcomes, including hierarchical clustering, Student's t-tests and receiver operating characteristic (ROC) analysis, to select a seven-gene MUC1-associated proliferation signature (MAPS). We demonstrated the prognostic value of MAPS in this database using Kaplan-Meier survival analysis, log-rank tests and Cox models. The MAPS was further validated for prognostic significance in 84 lung adenocarcinoma patients from an independent database. Results: MAPS genes were found to be associated with proliferation and cell cycle regulation and included CCNB1, CDC2, CDC20, CDKN3, MAD2L1, PRC1 and RRM2. MAPS expressors (MAPS+) had inferior survival compared to non-expressors (MAPS-). In the initial data set, 5-year survival was 65% (MAPS-) vs. 45% (MAPS+, p < 0.0001). Similarly, in the validation data set, 5-year survival was 57% (MAPS-) vs. 28% (MAPS+, p = 0.005). Conclusions: The MAPS signature, comprised of MUC1-CD-dependent genes involved in the control of cell cycle and proliferation, is associated with poor outcomes in patients with adenocarcinoma of the lung. These data provide potential new prognostic biomarkers and treatment targets for lung adenocarcinoma

    Recombinant human complement component C2 produced in a human cell line restores the classical complement pathway activity in-vitro: an alternative treatment for C2 deficiency diseases

    Get PDF
    Background: Complement C2 deficiency is the most common genetically determined complete complement deficiency and is associated with a number of diseases. Most prominent are the associations with recurrent serious infections in young children and the development of systemic lupus erythematosus (SLE) in adults. The links with these diseases reflect the important role complement C2 plays in both innate immunity and immune tolerance. Infusions with normal fresh frozen plasma for the treatment of associated disease have demonstrated therapeutic effects but so far protein replacement therapy has not been evaluated. Results: Human complement C2 was cloned and expressed in a mammalian cell line. The purity of recombinant human C2 (rhC2) was greater than 95% and it was characterized for stability and activity. It was sensitive to C1s cleavage and restored classical complement pathway activity in C2-deficient serum both in a complement activation ELISA and a hemolytic assay. Furthermore, rhC2 could increase C3 fragment deposition on the human pathogen Streptococcus pneumoniae in C2-deficient serum to levels equal to those with normal serum. Conclusions: Taken together these data suggest that recombinant human C2 can restore classical complement pathway activity and may serve as a potential therapeutic for recurring bacterial infections or SLE in C2-deficient patients

    Mineral phosphorus drives glacier algal blooms on the Greenland Ice Sheet

    Get PDF
    Melting of the Greenland Ice Sheet is a leading cause of land-ice mass loss and cryosphere-attributed sea level rise. Blooms of pigmented glacier ice algae lower ice albedo and accelerate surface melting in the ice sheet’s southwest sector. Although glacier ice algae cause up to 13% of the surface melting in this region, the controls on bloom development remain poorly understood. Here we show a direct link between mineral phosphorus in surface ice and glacier ice algae biomass through the quantification of solid and fluid phase phosphorus reservoirs in surface habitats across the southwest ablation zone of the ice sheet. We demonstrate that nutrients from mineral dust likely drive glacier ice algal growth, and thereby identify mineral dust as a secondary control on ice sheet melting.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    What scans we will read: imaging instrumentation trends in clinical oncology

    Get PDF
    Oncological diseases account for a significant portion of the burden on public healthcare systems with associated costs driven primarily by complex and long-lasting therapies. Through the visualization of patient-specific morphology and functional-molecular pathways, cancerous tissue can be detected and characterized non- invasively, so as to provide referring oncologists with essential information to support therapy management decisions. Following the onset of stand-alone anatomical and functional imaging, we witness a push towards integrating molecular image information through various methods, including anato-metabolic imaging (e.g., PET/ CT), advanced MRI, optical or ultrasound imaging. This perspective paper highlights a number of key technological and methodological advances in imaging instrumentation related to anatomical, functional, molecular medicine and hybrid imaging, that is understood as the hardware-based combination of complementary anatomical and molecular imaging. These include novel detector technologies for ionizing radiation used in CT and nuclear medicine imaging, and novel system developments in MRI and optical as well as opto-acoustic imaging. We will also highlight new data processing methods for improved non-invasive tissue characterization. Following a general introduction to the role of imaging in oncology patient management we introduce imaging methods with well-defined clinical applications and potential for clinical translation. For each modality, we report first on the status quo and point to perceived technological and methodological advances in a subsequent status go section. Considering the breadth and dynamics of these developments, this perspective ends with a critical reflection on where the authors, with the majority of them being imaging experts with a background in physics and engineering, believe imaging methods will be in a few years from now. Overall, methodological and technological medical imaging advances are geared towards increased image contrast, the derivation of reproducible quantitative parameters, an increase in volume sensitivity and a reduction in overall examination time. To ensure full translation to the clinic, this progress in technologies and instrumentation is complemented by progress in relevant acquisition and image-processing protocols and improved data analysis. To this end, we should accept diagnostic images as “data”, and – through the wider adoption of advanced analysis, including machine learning approaches and a “big data” concept – move to the next stage of non-invasive tumor phenotyping. The scans we will be reading in 10 years from now will likely be composed of highly diverse multi- dimensional data from multiple sources, which mandate the use of advanced and interactive visualization and analysis platforms powered by Artificial Intelligence (AI) for real-time data handling by cross-specialty clinical experts with a domain knowledge that will need to go beyond that of plain imaging
    corecore