25 research outputs found

    Absolute Oral Bioavailability of Creatine Monohydrate in Rats: Debunking a Myth

    Get PDF
    Creatine is an ergogenic compound used by athletes to enhance performance. Supplementation with creatine monohydrate (CM) has been suggested for musculoskeletal and neurological disorders. Until now, little is known about its pharmacokinetic profile. Our objective was to determine the oral bioavailability of CM and the influence of dose on oral absorption. Rats were dosed orally with low dose (10 mg/kg) or high dose (70 mg/kg

    Validation of Cadherin HAV6 Peptide in the Transient Modulation of the Blood-Brain Barrier for the Treatment of Brain Tumors

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.The blood-brain barrier (BBB) poses a major obstacle by preventing potential therapeutic agents from reaching their intended brain targets at sufficient concentrations. While transient disruption of the BBB has been used to enhance chemotherapeutic efficacy in treating brain tumors, limitations in terms of magnitude and duration of BBB disruption exist. In the present study, the preliminary safety and efficacy profile of HAV6, a peptide that binds to the external domains of cadherin, to transiently open the BBB and improve the delivery of a therapeutic agent, was evaluated in a murine brain tumor model. Transient opening of the BBB in response to HAV6 peptide administration was quantitatively characterized using both a gadolinium magnetic resonance imaging (MRI) contrast agent and adenanthin (Ade), the intended therapeutic agent. The effects of HAV6 peptide on BBB integrity and the efficacy of concurrent administration of HAV6 peptide and the small molecule inhibitor, Ade, in the growth and progression of an orthotopic medulloblastoma mouse model using human D425 tumor cells was examined. Systemic administration of HAV6 peptide caused transient, reversible disruption of BBB in mice. Increases in BBB permeability produced by HAV6 were rapid in onset and observed in all regions of the brain examined. Concurrent administration of HAV6 peptide with Ade, a BBB impermeable inhibitor of Peroxiredoxin-1, caused reduced tumor growth and increased survival in mice bearing medulloblastoma. The rapid onset and transient nature of the BBB modulation produced with the HAV6 peptide along with its uniform disruption and biocompatibility is well-suited for CNS drug delivery applications, especially in the treatment of brain tumors

    Integrative Analysis Reveals Subtype-Specific Regulatory Determinants in Triple Negative Breast Cancer

    No full text
    Different breast cancer (BC) subtypes have unique gene expression patterns, but their regulatory mechanisms have yet to be fully elucidated. We hypothesized that the top upregulated (Yin) and downregulated (Yang) genes determine the fate of cancer cells. To reveal the regulatory determinants of these Yin and Yang genes in different BC subtypes, we developed a lasso regression model integrating DNA methylation (DM), copy number variation (CNV) and microRNA (miRNA) expression of 391 BC patients, coupled with miRNA–target interactions and transcription factor (TF) binding sites. A total of 25, 20, 15 and 24 key regulators were identified for luminal A, luminal B, Her2-enriched, and triple negative (TN) subtypes, respectively. Many of the 24 TN regulators were found to regulate the PPARA and FOXM1 pathways. The Yin Yang gene expression mean ratio (YMR) and combined risk score (CRS) signatures built with either the targets of or the TN regulators were associated with the BC patients’ survival. Previously, we identified FOXM1 and PPARA as the top Yin and Yang pathways in TN, respectively. These two pathways and their regulators could be further explored experimentally, which might help to identify potential therapeutic targets for TN

    Selective DOT1L, LSD1, and HDAC Class I Inhibitors Reduce HOXA9 Expression in MLL-AF9 Rearranged Leukemia Cells, But Dysregulate the Expression of Many Histone-Modifying Enzymes

    No full text
    Mixed lineage leukemia results from chromosomal rearrangements of the gene mixed lineage leukemia (MLL). MLL-AF9 is one such rearrangement that recruits the lysine methyltransferase, human disruptor of telomere silencing 1-like (DOT1L) and lysine specific demethylase 1 (LSD1), resulting in elevated expression of the Homeobox protein A9 (HOXA9), and leukemia. Inhibitors of LSD1 or DOT1L reduce HOXA9 expression, kill MLL-rearranged cells, and may treat leukemia. To quantify their effects on histone modifying enzyme activity and expression in MLL-rearranged leukemia, we tested inhibitors of DOT1L (EPZ-5676), LSD1 (GSK2879552), and HDAC (mocetinostat), in the MLL-AF9 cell line MOLM-13. All inhibitors reduced MOLM-13 viability but only mocetinostat induced apoptosis. EPZ-5676 increased total histone lysine dimethylation, which was attributed to a reduction in LSD1 expression, and was indistinguishable from direct LSD1 inhibition by GSK2879552. All compounds directly inhibit, or reduce the expression of, HOXA9, DOT1L and LSD1 by qPCR, increase total histone lysine methylation and acetylation by LC-MS/MS, and specifically reduce H3K79Me2 and increase H3K14Ac. Each inhibitor altered the expression of many histone modifying enzymes which may precipitate additional changes in expression. To the extent that this decreases HOXA9 expression it benefits mixed lineage leukemia treatment, all other expression changes are off-target effects

    Bioinformatic Analyses of Broad H3K79me2 Domains in Different Leukemia Cell Line Data Sets

    No full text
    A subset of expressed genes is associated with a broad H3K4me3 (histone H3 trimethylated at lysine 4) domain that extends throughout the gene body. Genes marked in this way in normal cells are involved in cell-identity and tumor-suppressor activities, whereas in cancer cells, genes driving the cancer phenotype (oncogenes) have this feature. Other histone modifications associated with expressed genes that display a broad domain have been less studied. Here, we identified genes with the broadest H3K79me2 (histone H3 dimethylated at lysine 79) domain in human leukemic cell lines representing different forms of leukemia. Taking a bioinformatic approach, we provide evidence that genes with the broadest H3K79me2 domain have known roles in leukemia (e.g., JMJD1C). In the mixed-lineage leukemia cell line MOLM-13, the HOXA9 gene is in a 100 kb broad H3K79me2 domain with other HOXA protein-coding and oncogenic long non-coding RNA genes. The genes in this domain contribute to leukemia. This broad H3K79me2 domain has an unstable chromatin structure, as was evident by enhanced chromatin accessibility throughout. Together, we provide evidence that identification of genes with the broadest H3K79me2 domain will aid in generating a panel of genes in the diagnosis and therapeutic treatment of leukemia in the future

    Pharmacokinetic Analysis of an Oral Multicomponent Joint Dietary Supplement (Phycox®) in Dogs

    No full text
    Despite the lack of safety, efficacy and pharmacokinetic (PK) studies, multicomponent dietary supplements (nutraceuticals) have become increasingly popular as primary or adjunct therapies for clinical osteoarthritis in veterinary medicine. Phycox® is a line of multicomponent joint support supplements marketed for joint health in dogs and horses. Many of the active constituents are recognized anti-inflammatory and antioxidant agents. Due to a lack of PK studies in the literature for the product, a pilot PK study of select constituents in Phycox® was performed in healthy dogs. Two novel methods of analysis were developed and validated for quantification of glucosamine and select polyphenols using liquid chromatography-tandem mass spectrometry. After a single oral (PO) administrated dose of Phycox®, a series of blood samples from dogs were collected for 24 h post-dose and analyzed for concentrations of glucosamine HCl, hesperetin, resveratrol and naringenin. Non-compartmental PK analyses were carried out. Glucosamine was detected up to 8 h post-dose with a Tmax of 2 h and Cmax of 9.69 μg/mL. The polyphenols were not found at detectable concentrations in serum samples. Co-administration of glucosamine in the Phycox® formulation may enhance the absorption of glucosamine as determined by comparison of glucosamine PK data in the literature

    Absolute Oral Bioavailability of Creatine Monohydrate in Rats: Debunking a Myth

    No full text
    Creatine is an ergogenic compound used by athletes to enhance performance. Supplementation with creatine monohydrate (CM) has been suggested for musculoskeletal and neurological disorders. Until now, little is known about its pharmacokinetic profile. Our objective was to determine the oral bioavailability of CM and the influence of dose on oral absorption. Rats were dosed orally with low dose (10 mg/kg) or high dose (70 mg/kg) 13C-labeled CM. Blood samples were removed at various time points. Muscle and brain tissue were collected at the conclusion of the study. Plasma and tissue levels of 13C-labeled creatine were determined using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Physiologically based pharmacokinetic (PBPK) models of CM were built using GastroPlus™. These models were used to predict the plasma concentration–time profiles of creatine hydrochloride (CHCL), which has improved aqueous solubility compared to CM. Absolute oral bioavailability for low dose CM was 53% while high dose CM was only 16%. The simulated Cmax of 70 mg/kg CHCL was around 35 μg/mL compared to 14 μg/mL for CM with a predicted oral bioavailability of 66% with CHCL compared to 17% with CM. Our results suggest that the oral bioavailability of CM is less than complete and subject to dose and that further examination of improved dosage formulations of creatine is warranted
    corecore