208 research outputs found
Convolutional conditional neural processes for local climate downscaling
A new model is presented for multisite statistical downscaling of temperature and precipitation using convolutional conditional neural processes (convCNPs). ConvCNPs are a recently developed class of models that allow deep-learning techniques to be applied to off-the-grid spatio-temporal data. In contrast to existing methods that map from low-resolution model output to high-resolution predictions at a discrete set of locations, this model outputs a stochastic process that can be queried at an arbitrary latitude–longitude coordinate. The convCNP model is shown to outperform an ensemble of existing downscaling techniques over Europe for both temperature and precipitation taken from the VALUE intercomparison project. The model also outperforms an approach that uses Gaussian processes to interpolate single-site downscaling models at unseen locations. Importantly, substantial improvement is seen in the representation of extreme precipitation events. These results indicate that the convCNP is a robust downscaling model suitable for generating localised projections for use in climate impact studies
Phagocytosis of Aspergillus fumigatus by Human Bronchial Epithelial Cells Is Mediated by the Arp2/3 Complex and WIPF2
Aspergillus fumigatus is an opportunistic fungal pathogen capable of causing severe infection in humans. One of the limitations in our understanding of how A. fumigatus causes infection concerns the initial stages of infection, notably the initial interaction between inhaled spores or conidia and the human airway. Using publicly-available datasets, we identified the Arp2/3 complex and the WAS-Interacting Protein Family Member 2 WIPF2 as being potentially responsible for internalization of conidia by airway epithelial cells. Using a cell culture model, we demonstrate that RNAi-mediated knockdown of WIPF2 significantly reduces internalization of conidia into airway epithelial cells. Furthermore, we demonstrate that inhibition of Arp2/3 by a small molecule inhibitor causes similar effects. Using super-resolution fluorescence microscopy, we demonstrate that WIPF2 is transiently localized to the site of bound conidia. Overall, we demonstrate the active role of the Arp2/3 complex and WIPF2 in mediating the internalization of A. fumigatus conidia into human airway epithelial cells
White Blood Cell Differentials Enrich Whole Blood Expression Data in the Context of Acute Cardiac Allograft Rejection
Acute cardiac allograft rejection is a serious complication of heart transplantation. Investigating molecular processes in whole blood via microarrays is a promising avenue of research in transplantation, particularly due to the non-invasive nature of blood sampling. However, whole blood is a complex tissue and the consequent heterogeneity in composition amongst samples is ignored in traditional microarray analysis. This complicates the biological interpretation of microarray data. Here we have applied a statistical deconvolution approach, cell-specific significance analysis of microarrays (csSAM), to whole blood samples from subjects either undergoing acute heart allograft rejection (AR) or not (NR). We identified eight differentially expressed probe-sets significantly correlated to monocytes (mapping to 6 genes, all down-regulated in ARs versus NRs) at a false discovery rate (FDR) ≤ 15%. None of the genes identified are present in a biomarker panel of acute heart rejection previously published by our group and discovered in the same data***
Impact of Statins on Gene Expression in Human Lung Tissues
Statins are 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors that alter the synthesis of cholesterol. Some studies have shown a significant association of statins with improved respiratory health outcomes of patients with asthma, chronic obstructive pulmonary disease and lung cancer. Here we hypothesize that statins impact gene expression in human lungs and may reveal the pleiotropic effects of statins that are taking place directly in lung tissues. Human lung tissues were obtained from patients who underwent lung resection or transplantation. Gene expression was measured on a custom Affymetrix array in a discovery cohort (n = 408) and two replication sets (n = 341 and 282). Gene expression was evaluated by linear regression between statin users and non-users, adjusting for age, gender, smoking status, and other covariables. The results of each cohort were combined in a meta-analysis and biological pathways were studied using Gene Set Enrichment Analysis. The discovery set included 141 statin users. The lung mRNA expression levels of eighteen and three genes were up-regulated and down-regulated in statin users (FDR < 0.05), respectively. Twelve of the up-regulated genes were replicated in the first replication set, but none in the second (p-value < 0.05). Combining the discovery and replication sets into a meta-analysis improved the significance of the 12 up-regulated genes, which includes genes encoding enzymes and membrane proteins involved in cholesterol biosynthesis. Canonical biological pathways altered by statins in the lung include cholesterol, steroid, and terpenoid backbone biosynthesis. No genes encoding inflammatory, proteases, pro-fibrotic or growth factors were altered by statins, suggesting that the direct effect of statin in the lung do not go beyond its antilipidemic action. Although more studies are needed with specific lung cell types and different classes and doses of statins, the improved health outcomes and survival observed in statin users with chronic lung diseases do not seem to be mediated through direct regulation of gene expression in the lung
Preparing for Life: Plasma Proteome Changes and Immune System Development During the First Week of Human Life.
Neonates have heightened susceptibility to infections. The biological mechanisms are incompletely understood but thought to be related to age-specific adaptations in immunity due to resource constraints during immune system development and growth. We present here an extended analysis of our proteomics study of peripheral blood-plasma from a study of healthy full-term newborns delivered vaginally, collected at the day of birth and on day of life (DOL) 1, 3, or 7, to cover the first week of life. The plasma proteome was characterized by LC-MS using our established 96-well plate format plasma proteomics platform. We found increasing acute phase proteins and a reduction of respective inhibitors on DOL1. Focusing on the complement system, we found increased plasma concentrations of all major components of the classical complement pathway and the membrane attack complex (MAC) from birth onward, except C7 which seems to have near adult levels at birth. In contrast, components of the lectin and alternative complement pathways mainly decreased. A comparison to whole blood messenger RNA (mRNA) levels enabled characterization of mRNA and protein levels in parallel, and for 23 of the 30 monitored complement proteins, the whole blood transcript information by itself was not reflective of the plasma protein levels or dynamics during the first week of life. Analysis of immunoglobulin (Ig) mRNA and protein levels revealed that IgM levels and synthesis increased, while the plasma concentrations of maternally transferred IgG1-4 decreased in accordance with their in vivo half-lives. The neonatal plasma ratio of IgG1 to IgG2-4 was increased compared to adult values, demonstrating a highly efficient IgG1 transplacental transfer process. Partial compensation for maternal IgG degradation was achieved by endogenous synthesis of the IgG1 subtype which increased with DOL. The findings were validated in a geographically distinct cohort, demonstrating a consistent developmental trajectory of the newborn's immune system over the first week of human life across continents. Our findings indicate that the classical complement pathway is central for newborn immunity and our approach to characterize the plasma proteome in parallel with the transcriptome will provide crucial insight in immune ontogeny and inform new approaches to prevent and treat diseases
A cloud-based bioinformatic analytic infrastructure and Data Management Core for the Expanded Program on Immunization Consortium.
The Expanded Program for Immunization Consortium - Human Immunology Project Consortium study aims to employ systems biology to identify and characterize vaccine-induced biomarkers that predict immunogenicity in newborns. Key to this effort is the establishment of the Data Management Core (DMC) to provide reliable data and bioinformatic infrastructure for centralized curation, storage, and analysis of multiple de-identified "omic" datasets. The DMC established a cloud-based architecture using Amazon Web Services to track, store, and share data according to National Institutes of Health standards. The DMC tracks biological samples during collection, shipping, and processing while capturing sample metadata and associated clinical data. Multi-omic datasets are stored in access-controlled Amazon Simple Storage Service (S3) for data security and file version control. All data undergo quality control processes at the generating site followed by DMC validation for quality assurance. The DMC maintains a controlled computing environment for data analysis and integration. Upon publication, the DMC deposits finalized datasets to public repositories. The DMC architecture provides resources and scientific expertise to accelerate translational discovery. Robust operations allow rapid sharing of results across the project team. Maintenance of data quality standards and public data deposition will further benefit the scientific community
A phase II study of weekly cisplatin, 6S-stereoisomer leucovorin and fluorouracil as first-line chemotherapy for elderly patients with advanced gastric cancer
The incidence of gastric cancer (GC) increases significantly after the fifth decade and palliative chemotherapy is the ultimate treatment in the majority of patients. We investigated safety and efficacy of a weekly regimen with cisplatin, fluorouracil and leucovorin as first-line chemotherapy for elderly patients with advanced GC. Chemotherapy-naive patients older than 65 years were considered eligible for study entry. Frail elderly patients were identified and excluded according to the following criteria: age >85 years, dependence in one or more activities of daily living (activities of daily living and instrumental activities of daily living scales), three or more comorbid conditions, one or more geriatric syndromes. Chemotherapy consisted of 1-day per week administration of intravenous cisplatin 35 mg m(-2), 6S-stereoisomer leucovorin 250 mg m(-2) and fluorouracil 500 mg m(-2) (PLF). Patients were re-evaluated after eight weekly cycles and six additional weekly administrations were planned for patients without disease progression. A 5-day subcutaneous filgrastim (5 mug Kg(-1) day(-1), days +1-+5) was used after the first treatment delay for neutropenia and maintained thereafter. In the whole group, the best intention-to-treat overall response rate was 43\% (95\% CI: 30-56\%). The time to disease progression and the median survival time were 5.3 and 8.6 months, respectively. Fatigue was the commonest nonhaematologic toxicity (71\% of the patients). Filgrastim was used in 30 patients who showed grade II (20 patients) or grade III (10 patients) neutropenia. Neither grade IV toxicity nor toxic deaths were observed. The weekly PLF regimen resulted safe and effective in elderly patients with advanced GC. This outpatient regimen is based on old and low-cost drugs and it may represent an alternative to new and more expensive combinations
Ontogeny of plasma cytokine and chemokine concentrations across the first week of human life.
INTRODUCTION/BACKGROUND & AIMS: Early life is marked by distinct and rapidly evolving immunity and increased susceptibility to infection. The vulnerability of the newborn reflects development of a complex immune system in the face of rapidly changing demands during the transition to extra-uterine life. Cytokines and chemokines contribute to this dynamic immune signaling network and can be altered by many factors, such as infection. Newborns undergo dynamic changes important to health and disease, yet there is limited information regarding human neonatal plasma cytokine and chemokine concentrations over the first week of life. The few available studies are limited by small sample size, cross-sectional study design, or focus on perturbed host states like severe infection or prematurity. To characterize immune ontogeny among healthy full-term newborns, we assessed plasma cytokine and chemokine concentrations across the first week of life in a robust longitudinal cohort of healthy, full-term African newborns. METHODS: We analyzed a subgroup of a cohort of healthy newborns at the Medical Research Council Unit in The Gambia (West Africa; N = 608). Peripheral blood plasma was collected from all study participants at birth (day of life (DOL) 0) and at one follow-up time point at DOL 1, 3, or 7. Plasma cytokine and chemokine concentrations were measured by bead-based cytokine multiplex assay. Unsupervised clustering was used to identify patterns in plasma cytokine and chemokine ontogeny during early life. RESULTS: We observed an increase across the first week of life in plasma Th1 cytokines such as IFNγ and CXCL10 and a decrease in Th2 and anti-inflammatory cytokines such as IL-6 and IL-10, and chemokines such as CXCL8. In contrast, other cytokines and chemokines (e.g. IL-4 and CCL5, respectively) remained unchanged during the first week of life. This robust ontogenetic pattern did not appear to be affected by gestational age or sex. CONCLUSIONS: Ontogeny is a strong driver of newborn plasma-based levels of cytokines and chemokines throughout the first week of life with a rising IFNγ axis suggesting post-natal upregulation of host defense pathways. Our study will prove useful to the design and interpretation of future studies aimed at understanding the neonatal immune system during health and disease
Dual Organism Transcriptomics of Airway Epithelial Cells Interacting with Conidia of Aspergillus fumigatus
Background
Given the complex nature of the responses that can occur in host-pathogen interactions, dual transcriptomics offers a powerful method of elucidating these interactions during infection. The gene expression patterns of Aspergillus fumigatus conidia or host cells have been reported in a number of previous studies, but each focused on only one of the interacting organisms. In the present study, we profiled simultaneously the transcriptional response of both A. fumigatus and human airway epithelial cells (AECs).
Methodology
16HBE14o- transformed bronchial epithelial cells were incubated with A. fumigatus conidia at 37°C for 6 hours, followed by genome-wide transcriptome analysis using human and fungal microarrays. Differentially expressed gene lists were generated from the microarrays, from which biologically relevant themes were identified. Human and fungal candidate genes were selected for validation, using RT-qPCR, in both 16HBE14o- cells and primary AECs co-cultured with conidia.
Principal Findings
We report that ontologies related to the innate immune response are activated by co-incubation with A. fumigatus condia, and interleukin-6 (IL-6) was confirmed to be up-regulated in primary AECs via RT-qPCR. Concomitantly, A. fumigatus was found to up-regulate fungal pathways involved in iron acquisition, vacuolar acidification, and formate dehydrogenase activity
- …