3 research outputs found

    Low incidence of toxoplasma infection during pregnancy and in newborns in Sweden

    Get PDF
    To estimate the burden of disease due to congenital toxoplasmosis in Sweden the incidence of primary infections during pregnancy and birth prevalence of congenital toxoplasmosis in 40978 children born in two regions in Sweden was determined. Women possibly infected during pregnancy were identified based on: 1, detection of specific IgG based on neonatal screening of the phenylketonuria (PKU) card blood spot followed by retrospective testing of stored prenatal samples to detect women who acquired infection during pregnancy and follow up of their children to 12 months; 2, detection of specific IgM on the PKU blood spot. The birth prevalence of congenital toxoplasmosis was 0·73/10000 (95% CI 0·15–2·14) (3/40978). The incidence of primary infection during pregnancy was 5·1/10000 (95% CI 2·6–8·9) susceptible pregnant women. The seroprevalence in the southern part was 25·7% and in the Stockholm area 14·0%. The incidence of infection during pregnancy was low, as the birth prevalence of congenital toxoplasmosis. Neonatal screening warrants consideration in view of the low cost and feasibility

    Secondary metabolic effects in complex I deficiency

    No full text
    The objective of this study was to investigate clinical, biochemical, and genetic features in 7 probands (a total of 11 patients) with nicotine-amide adenine dinucleotide (NADH) dehydrogenase (complex I) deficiency. We screened the mitochondrial DNA for mutations and found pathogenic mutations in complex I genes (mitochondrial NADH dehydrogenase subunit (MTND) genes) in three probands. The 10191T>C mutation in MTND3 and the 14487T>C mutation in MTND6 were present in two probands with Leigh's-like and Leigh's syndrome, respectively. Four siblings with a syndrome consisting of encephalomyopathy with hearing impairment, optic nerve atrophy, and cardiac involvement had the 11778G>A mutation in MTND4, previously associated with Leber hereditary optic neuropathy. These findings demonstrate that mutations in MTND genes are relatively frequent in patients with complex I deficiency. Biochemical measurements of respiratory chain function in muscle mitochondria showed that all patients had a moderate decrease of the mitochondrial adenosine triphosphate production rate. Interestingly, the complex I deficiency caused secondary metabolic alterations with decreased oxaloacetate-induced inhibition of succinate dehydrogenase (complex II) and excretion of Krebs cycle intermediates in the urine. Our results thus suggest that altered regulation of metabolism may play an important role in the pathogenesis of complex I deficiency
    corecore