3,131 research outputs found

    Scanning Tunneling Spectroscopic Studies of the Effects of Dielectrics and Metallic Substrates on the Local Electronic Characteristics of Graphene

    Get PDF
    Atomically resolved imaging and spectroscopic characteristics of graphene grown by chemical vapor deposition (CVD) on copper foils are investigated and compared with those of mechanical exfoliated graphene on SiO_2. For exfoliated graphene, the local spectral deviations from ideal behavior may be attributed to strain induced by the SiO_2 substrate. For CVD grown graphene, the lattice structure appears strongly distorted by the underlying copper, with regions in direct contact with copper showing nearly square lattices whereas suspended regions from thermal relaxation exhibiting nearly honeycomb or hexagonal lattice structures. The electronic density of states (DOS) correlates closely with the atomic arrangements of carbon, showing excess zero-bias tunneling conductance and nearly energy-independent DOS for strongly distorted graphene, in contrast to the linearly dispersive DOS for suspended graphene. These results suggest that graphene can interact strongly with both metallic and dielectric materials in close proximity, leading to non-negligible modifications to the electronic properties

    A study of inner zone electron data and their comparison with trapped radiation models

    Get PDF
    A summary and intercomparison of recent inner radiation zone electron data are presented. The morphology of the inner radiation zone is described and the data compared with the current generation of inner zone trapped electron models. An analytic representation of the inner zone equatorial pitch angle distribution is presented. This model was based upon data from eight satellites and was used to reduce all data to the form of equatorial flux. Although no Starfish-free high energy electron measurements were available from the inner portion of the inner radiation zone, it was found that the AE-6 model provided a good description of the present solar maximum environment

    Hybrid FEA/SEA Assessment for an Orthogrid Cylindrical Panel Section and Periodic Subsystem Modeling Evaluation

    Get PDF
    In the lower frequency range, where particular boundary conditions can make a significant difference to panel response characteristics Statistical Energy Analysis (SEA) has never been the analytical tool of choice. In addition to boundary condition effects, SEA is not well suited in frequency bands where no modes or less than a few modes exist. The advent of the Hybrid Module has enabled integration of Finite Element Analysis to expand and enhance the capability for response calculations within VA One into the lower frequency range. Exploration of several additional modeling approaches was completed for the cylindrical orthogrid panel test article that was examined in Reference 1. Comparison of the new analytical response predictions with the measured response data from ground test and the pure SEA results from the reference will be presented. One approach that is considered promising is the periodic subsystem capability. Initially, a detailed FEM of just one region of the test article is defined. After evaluating this small region using symmetric boundary conditions, the FEM may be expanded to determine the properties of the entire system using similar connected regions that map over the entire test article. Another approach is the direct use of a very detailed finite element model of the entire panel, explicitly modeling pocket and rib details of the structure. A third approach is to approximate localized structure geometry details with a smeared property generalization using a PCOMP (NASTRAN card used to define layered composite structures) to define skin layer and ribbed layer for the orthogrid panel. The authors expect to demonstrate that the integrated Hybrid/FEM approach increases confidence in response prediction in the lower frequency range (for example from 20-300 Hz for the test article under consideration). In addition the strength and weakness of each additional approach will be highlighted and compared to those reported with those reported in an earlier pape

    Evidence for Strain-Induced Local Conductance Modulations in Single-Layer Graphene on SiO_2

    Get PDF
    Graphene has emerged as an electronic material that is promising for device applications and for studying two-dimensional electron gases with relativistic dispersion near two Dirac points. Nonetheless, deviations from Dirac-like spectroscopy have been widely reported with varying interpretations. Here we show evidence for strain-induced spatial modulations in the local conductance of single-layer graphene on SiO_2 substrates from scanning tunneling microscopic (STM) studies. We find that strained graphene exhibits parabolic, U-shaped conductance vs bias voltage spectra rather than the V-shaped spectra expected for Dirac fermions, whereas V-shaped spectra are recovered in regions of relaxed graphene. Strain maps derived from the STM studies further reveal direct correlation with the local tunneling conductance. These results are attributed to a strain-induced frequency increase in the out-of-plane phonon mode that mediates the low-energy inelastic charge tunneling into graphene

    Scanning Tunnelling Spectroscopic Studies of Dirac Fermions in Graphene and Topological Insulators

    Get PDF
    We report novel properties derived from scanning tunnelling spectroscopic (STS) studies of Dirac fermions in graphene and the surface state (SS) of a strong topological insulator (STI), Bi_2Se_3. For mono-layer graphene grown on Cu by chemical vapour deposition (CVD), strain-induced scalar and gauge potentials are manifested by the charging effects and the tunnelling conductance peaks at quantized energies, respectively. Additionally, spontaneous time-reversal symmetry breaking is evidenced by the alternating anti-localization and localization spectra associated with the zero-mode of two sublattices while global time-reversal symmetry is preserved under the presence of pseudo-magnetic fields. For Bi_2Se_3 epitaxial films grown on Si(111) by molecular beam epitaxy (MBE), spatially localized unitary impurity resonances with sensitive dependence on the energy difference between the Fermi level and the Dirac point are observed for samples thicker than 6 quintuple layers (QL). These findings are characteristic of the SS of a STI and are direct manifestation of strong topological protection against impurities. For samples thinner than 6-QL, STS studies reveal the openup of an energy gap in the SS due to overlaps of wave functions between the surface and interface layers. Additionally, spin-preserving quasiparticle interference wave-vectors are observed, which are consistent with the Rashba-like spin-orbit splitting

    AE 6: A model environment of trapped electrons for solar maximum

    Get PDF
    A projected inner zone electron model environment, AE 6, for the epoch 1980 is presented. It is intended to provide estimates of mission fluxes that spacecraft will encounter in the coming solar maximum years. AE 6 is presented by graphs of omnidirectional integral flux as a function of L shell, the ambient magnetic field B, and the energy E. Results of orbital integrations for altitudes from 150 n.m. to 18,000 n.m. are given for circular orbits with four different inclinations, using the AE 6 and the AE 4 solar maximum models for the inner and outer zones, respectively. The derivation of AE 6 is described, and a brief comparison is given of the radial profiles of equatorial fluxes from several related models. A short summary of the associated computer programs is included

    The Dok Cold Eddy

    Get PDF
    Current and temperature patterns in the Ulleung Basin of the Japan/East Sea are examined using acoustic travel-time measurements from an array of pressure-gauge-equipped inverted echo sounders moored between June 1999 and July 2001. The focus here is the formation and behavior of a persistent cold eddy observed south of Dok Island, referred to as the Dok Cold Eddy (DCE), and meandering of the Subpolar Front. The DCE is typically about 60 km in diameter and originates from the pinching off of a Subpolar Front meander between Ulleung and Dok Islands. After formation, the DCE dwells southwest of Dok Island for 1–6 months before propagating westward toward Korea, where it deflects the path of the East Korean Warm Current (EKWC). Four such DCE propagation events between January and June 2000 each deflected the EKWC, and after the fourth deflection the EKWC changed paths and flowed westward along the Japanese shelf as the “Offshore Branch” from June through November 2000. Beginning in March 2001, a deep, persistent meander of the Subpolar Front developed and oscillated with a period near 60 days, resulting in the deformation and northwestward displacement of the Ulleung Eddy. Satellite-altimeter data suggest that the Ulleung Eddy may have entered the northern Japan/East Sea. The evolution of this meander is compared with thin-jet nonlinear dynamics described by the modified Korteweg–deVries equation
    • …
    corecore