3,097 research outputs found

    A study of inner zone electron data and their comparison with trapped radiation models

    Get PDF
    A summary and intercomparison of recent inner radiation zone electron data are presented. The morphology of the inner radiation zone is described and the data compared with the current generation of inner zone trapped electron models. An analytic representation of the inner zone equatorial pitch angle distribution is presented. This model was based upon data from eight satellites and was used to reduce all data to the form of equatorial flux. Although no Starfish-free high energy electron measurements were available from the inner portion of the inner radiation zone, it was found that the AE-6 model provided a good description of the present solar maximum environment

    Scanning Tunneling Spectroscopic Studies of the Effects of Dielectrics and Metallic Substrates on the Local Electronic Characteristics of Graphene

    Get PDF
    Atomically resolved imaging and spectroscopic characteristics of graphene grown by chemical vapor deposition (CVD) on copper foils are investigated and compared with those of mechanical exfoliated graphene on SiO_2. For exfoliated graphene, the local spectral deviations from ideal behavior may be attributed to strain induced by the SiO_2 substrate. For CVD grown graphene, the lattice structure appears strongly distorted by the underlying copper, with regions in direct contact with copper showing nearly square lattices whereas suspended regions from thermal relaxation exhibiting nearly honeycomb or hexagonal lattice structures. The electronic density of states (DOS) correlates closely with the atomic arrangements of carbon, showing excess zero-bias tunneling conductance and nearly energy-independent DOS for strongly distorted graphene, in contrast to the linearly dispersive DOS for suspended graphene. These results suggest that graphene can interact strongly with both metallic and dielectric materials in close proximity, leading to non-negligible modifications to the electronic properties

    AE 6: A model environment of trapped electrons for solar maximum

    Get PDF
    A projected inner zone electron model environment, AE 6, for the epoch 1980 is presented. It is intended to provide estimates of mission fluxes that spacecraft will encounter in the coming solar maximum years. AE 6 is presented by graphs of omnidirectional integral flux as a function of L shell, the ambient magnetic field B, and the energy E. Results of orbital integrations for altitudes from 150 n.m. to 18,000 n.m. are given for circular orbits with four different inclinations, using the AE 6 and the AE 4 solar maximum models for the inner and outer zones, respectively. The derivation of AE 6 is described, and a brief comparison is given of the radial profiles of equatorial fluxes from several related models. A short summary of the associated computer programs is included

    Evidence for Strain-Induced Local Conductance Modulations in Single-Layer Graphene on SiO_2

    Get PDF
    Graphene has emerged as an electronic material that is promising for device applications and for studying two-dimensional electron gases with relativistic dispersion near two Dirac points. Nonetheless, deviations from Dirac-like spectroscopy have been widely reported with varying interpretations. Here we show evidence for strain-induced spatial modulations in the local conductance of single-layer graphene on SiO_2 substrates from scanning tunneling microscopic (STM) studies. We find that strained graphene exhibits parabolic, U-shaped conductance vs bias voltage spectra rather than the V-shaped spectra expected for Dirac fermions, whereas V-shaped spectra are recovered in regions of relaxed graphene. Strain maps derived from the STM studies further reveal direct correlation with the local tunneling conductance. These results are attributed to a strain-induced frequency increase in the out-of-plane phonon mode that mediates the low-energy inelastic charge tunneling into graphene

    The Dok Cold Eddy

    Get PDF
    Current and temperature patterns in the Ulleung Basin of the Japan/East Sea are examined using acoustic travel-time measurements from an array of pressure-gauge-equipped inverted echo sounders moored between June 1999 and July 2001. The focus here is the formation and behavior of a persistent cold eddy observed south of Dok Island, referred to as the Dok Cold Eddy (DCE), and meandering of the Subpolar Front. The DCE is typically about 60 km in diameter and originates from the pinching off of a Subpolar Front meander between Ulleung and Dok Islands. After formation, the DCE dwells southwest of Dok Island for 1–6 months before propagating westward toward Korea, where it deflects the path of the East Korean Warm Current (EKWC). Four such DCE propagation events between January and June 2000 each deflected the EKWC, and after the fourth deflection the EKWC changed paths and flowed westward along the Japanese shelf as the “Offshore Branch” from June through November 2000. Beginning in March 2001, a deep, persistent meander of the Subpolar Front developed and oscillated with a period near 60 days, resulting in the deformation and northwestward displacement of the Ulleung Eddy. Satellite-altimeter data suggest that the Ulleung Eddy may have entered the northern Japan/East Sea. The evolution of this meander is compared with thin-jet nonlinear dynamics described by the modified Korteweg–deVries equation

    Economic Implications of Farmer Storage of Surface Water in Federal Projects: Elephant Butte Irrigahon District, Dona Ana and Sierra Counties, New Mexico

    Get PDF
    This study estimated the expected regional impact and economic feasibility of a proposed water accumulation or water saving option for agricultural producers operating in the Elephant Butte Irrigation District in southern New Mexico. The water accumulation plan would allow agricultural producers to retain part of a given year's surface water allocation in Elephant Butte Reservoir, providing use of the unevaporated portion in a later year. The analysis was based upon modeling of current cropping practices subject to regional resource constraints within a static linear programming model. Pertinent input/output coefficients and costs were incorporated, with five-year (1976-1980) average output prices assumed for twelve crops spread across 11 soil groups. Applicable fixed costs and interest charges were taken into account. Net returns to the region were maximized assuming 1 and 3 acre-feet of groundwater available per year per acre irrigated. Surface water availability was varied from zero to 3 acre-feet per acre to obtain schedules depicting regional net returns and cropping patterns for varying surface water allocations for both the groundwater situations examined. These schedules were then used to build temporal linear programming models which maximized the present value of net returns for the period 1963 to 1980 subject to historical surface water allocations and reservoir evaporation rates. Calculation of these evaporation rates took into consideration increased lake levels due to surface water storage. The temporal models were used to estimate an optimal allocation of surface water over the 18 year period investigated for the two groundwater availability situations considered. Returns for the optimal surface water allocations were then upper bounds on potential net returns to the region. Projected streams of net returns were also obtained for each of the scenarios analyzed; i.e., optimal temporal allocation of surface water, 2 acre feet of surface water per year limit and actual allocation of surface water given the 1 and 3 foot groundwater limitations. These streams of net returns were valued in 1980 dollars allowing comparison among the alternative scenarios. Differences between the various returns streams for each groundwater situation provided a measure of possible economic effects of the water saving program. Results of the study for current groundwater availability conditions indicate that optimally temporal allocated surface water use would increase average annualized net returns per acre from that of the actual surface water allocation by .82 dollars per year, or less than .2 %. Use of the more realistic two acre-foot per acre limit on surface water use led to an increase in annualized net returns of only .23 dollars per acre per year. Both increases were deemed insufficient to cover anticipated administrative costs of the program. Under conditions of limited groundwater availability (1 acre-foot per acre), percentage increases in annualized net returns over those for the actual surface water allocation were more significant. Use of the water saving option and perfect knowledge of future surface water allocations resulted in increased annualized net returns of 8.41peracreperyearforanincreaseof54z.Forthetwoacrefootsurfacewateruselimitationcase,annualizednetreturnsincreasedby8.41 per acre per year for an increase of 54 z. For the two acre-foot surface water use limitation case, annualized net returns increased by 3.68 per acre per year (23.7 %). In all cases considered, groundwater use increased with use of the water saving option. These economic results, coupled with possible political obstacles faced by the program, suggested that alternative water management schemes should be considered

    Observations of Kuroshio flow variations in the East China Sea

    Get PDF
    Kuroshio velocity structure and transport in the East China Sea (ECS) were investigated as part of a 23‐month study using inverted echo sounders and acoustic Doppler current profilers (ADCPs) along the regularly sampled PN‐line. Flow toward the northeast is concentrated near the continental shelf with the mean surface velocity maximum located 30 km offshore from the shelf break (taken as the 170 m isobath). There are two regions of southwestward flow: a deep countercurrent over the continental slope beneath the Kuroshio axis and a recirculation offshore which extends throughout the whole water column. There is a bimodal distribution to the depth of maximum velocity with occurrence peaks at the surface and 210 dbar. When the maximum velocity is located within the top 80 m of the water column, it ranges between 0.36 m/s and 2.02 m/s; when the maximum velocity is deeper than 80 m, it ranges between 0.31 m/s and 1.11 m/s. The 13‐month mean net absolute transport of the Kuroshio in the ECS is 18.5 ± 0.8 Sv (standard deviation, σ = 4.0 Sv). The mean positive and negative portions of this net flow are 24.0 ± 0.9 Sv and −5.4 ± 0.3 Sv, respectively

    An Evolutionary Reduction Principle for Mutation Rates at Multiple Loci

    Full text link
    A model of mutation rate evolution for multiple loci under arbitrary selection is analyzed. Results are obtained using techniques from Karlin (1982) that overcome the weak selection constraints needed for tractability in prior studies of multilocus event models. A multivariate form of the reduction principle is found: reduction results at individual loci combine topologically to produce a surface of mutation rate alterations that are neutral for a new modifier allele. New mutation rates survive if and only if they fall below this surface - a generalization of the hyperplane found by Zhivotovsky et al. (1994) for a multilocus recombination modifier. Increases in mutation rates at some loci may evolve if compensated for by decreases at other loci. The strength of selection on the modifier scales in proportion to the number of germline cell divisions, and increases with the number of loci affected. Loci that do not make a difference to marginal fitnesses at equilibrium are not subject to the reduction principle, and under fine tuning of mutation rates would be expected to have higher mutation rates than loci in mutation-selection balance. Other results include the nonexistence of 'viability analogous, Hardy-Weinberg' modifier polymorphisms under multiplicative mutation, and the sufficiency of average transmission rates to encapsulate the effect of modifier polymorphisms on the transmission of loci under selection. A conjecture is offered regarding situations, like recombination in the presence of mutation, that exhibit departures from the reduction principle. Constraints for tractability are: tight linkage of all loci, initial fixation at the modifier locus, and mutation distributions comprising transition probabilities of reversible Markov chains.Comment: v3: Final corrections. v2: Revised title, reworked and expanded introductory and discussion sections, added corollaries, new results on modifier polymorphisms, minor corrections. 49 pages, 64 reference

    Control of T lymphocyte morphology by the GTPase Rho

    Get PDF
    BACKGROUND: Rho family GTPase regulation of the actin cytoskeleton governs a variety of cell responses. In this report, we have analyzed the role of the GTPase Rho in maintenance of the T lymphocyte actin cytoskeleton. RESULTS: Inactivation of the GTPase Rho in the human T lymphocytic cell line HPB-ALL does not inhibit constitutively high adhesion to the integrin β1 substrate fibronectin. It did however result in the aberrant extension of finger-like dendritic processes on the substrates VCAM-1, Fn, and mAb specific to β1 integrins. Time-lapse video microscopy demonstrated that C3 induced extensions were primarily the result of an altered pseudopod elongation rather than retraction. Once the stellate pseudopodia extended, none retracted, and cells became completely immobile. Filipodial structures were absent and the dendritic-like processes in C3 treated cells were rich in filamentous actin. Immunolocalization of RhoA in untreated HPB-ALL cells spreading on fibronectin demonstrated a diffuse staining pattern within the pseudopodia. In C3 treated cells, clusters of RhoA were pronounced and localized within the altered extensions. CONCLUSIONS: GTPase Rho is actively involved in the regulation of T lymphocyte morphology and motility
    corecore