15 research outputs found

    Effectiveness of mechanical chest compression for out-of-hospital cardiac arrest patients in an emergency department

    Get PDF
    AbstractBackgroundTo increase the chance of restoring spontaneous circulation, cardiopulmonary resuscitation (CPR) with high-quality chest compressions is needed. We hypothesized that, in a municipal hospital emergency department, the outcome in nontraumatic out-of-hospital cardiac arrest patients treated with standard CPR followed by mechanical chest compression (MeCC) was not inferior to that followed by manual chest compression (MaCC). The purposes of the study were to test our hypothesis and investigate whether the use of MeCC decreased human power demands for CPR.MethodsA total of 455 consecutive out-of-hospital cardiac arrest patients of presumed cardiac etiology were divided into two groups according to the chest compressions they received (MaCC or MeCC) in this retrospective review study. Human power demand for CPR was described according to the Basic Life Support/Advanced Cardiovascular Life Support guidelines and the device handbook. The primary endpoint was recovery of spontaneous circulation during resuscitation, and the secondary endpoints were survival to hospital admission and medical human power demands.ResultsIn this study, recovery of spontaneous circulation was achieved in 33.3% of patients in the MeCC group and in 27.1% in the MaCC group (p = 0.154), and the percentages of patients who survived hospitalization were 22.2% and 17.6%, respectively (p = 0.229). A ratio of 2:4 for the human power demand for CPR between the groups was found. Independent predictors of survival to hospitalization were ventricular fibrillation/pulseless ventricular tachycardia as initial rhythm and recovery of spontaneous circulation.ConclusionNo difference was found in early survival between standard CPR performed with MeCC and that performed with MaCC. However, the use of the MeCC device appears to promote staff availability without waiving patient care in the human power-demanding emergency departments of Taiwan hospitals

    Fish Oil, but Not Olive Oil, Ameliorates Depressive-Like Behavior and Gut Microbiota Dysbiosis in Rats under Chronic Mild Stress

    No full text
    Background: This study investigated the effects of fish oil and olive oil in improving dysbiosis and depressive-like symptoms. Methods and results: Male rats were fed normal, fish oil-rich or olive oil-rich diets for 14 weeks. Chronic mild stress (CMS) was administered from week 2. The sucrose preference test (SPT) and forced swimming test (FST) were used to determine depressive-like behavior. The SPT results revealed that the CMS, CMS with imipramine (CMS+P) treatment, and CMS with olive oil diet (CMS+O) groups exhibited significantly reduced sucrose intake from week 8, whereas the fish oil diet (CMS+F) group exhibited significantly reduced sucrose intake from week 10. The FST results showed that the immobile time of the CMS+F group was significantly less than that of the CMS-only group. Next generation sequencing (NGS) results showed CMS significantly reduced the abundance of Lactobacillus and increased that of Marvinbryantia and Ruminiclostridium_6. However, the CMS+F group showed an increase in the abundance of Eisenbergiella, Ruminococcaceae_UCG_009, and Holdemania, whereas the CMS+O group showed an increase in the abundance of Akkermansia. Conclusions: CMS stimuli altered the gut microbiome in depressed rats. Fish oil and olive oil exerted part of a prebiotic-like effect to ameliorate dysbiosis induced by CMS. However, only fish oil ameliorated depressive-like symptoms

    N-3 PUFA Ameliorates the Gut Microbiota, Bile Acid Profiles, and Neuropsychiatric Behaviours in a Rat Model of Geriatric Depression

    No full text
    The brain−gut−microbiome (BGM) axis affects host bioinformation. N-3 polyunsaturated fatty acids (PUFAs) alleviate cognitive impairment and depression in older adults. This study investigated altered microbiota−bile acid signalling as a potential mechanism linking fish oil-induced gut changes in microbiota to alleviate psychological symptoms. Sprague Dawley rats were fed a fish oil diet and administered D-galactose combined with chronic unpredictable mild stress (CUMS) to simulate geriatric depression. The cognitive function, psychological symptoms, microbiota compositions, and faecal bile acid profiles of the rats were assessed thereafter. A correlation analysis was conducted to determine whether the fish oil-induced alteration of the rats’ microbiota and bile acid profiles affected the rats’ behaviour. D-galactose and CUMS resulted in lower concentrations of Firmicutes, significantly altered bile acid profiles, and abnormal neurobehaviours. Fish oil intake alleviated the rats’ emotional symptoms and increased the abundance of Bacteroidetes, Prevotellaceae, Marinifilaceae, and Bacteroidesuniformis. It also elevated the concentrations of primary bile acids and taurine-conjugated bile acids in the rats’ faeces. The rats’ taurine-conjugated bile acid levels were significantly correlated with their behavioural outcomes. In short, fish oil intake may alleviate psychological symptoms by altering the microbial metabolites involved in the BGM axis, especially in the conjugation of bile acids

    A novel miR-365-3p/EHF/keratin 16 axis promotes oral squamous cell carcinoma metastasis, cancer stemness and drug resistance via enhancing β5-integrin/c-met signaling pathway

    No full text
    Abstract Background Targeting the c-Met signaling pathway has become a therapeutic strategy in multiple types of cancer. We unveiled a novel c-Met regulating mechanism that could be applied as a modality for oral squamous cell carcinoma (OSCC) therapy. Methods Upregulation of keratin 16 (KRT16) was found by comparing isogenic pairs of low and high invasive human OSCC lines via microarray analysis. OSCC cells with ectopic expression or silencing of KRT16 were used to scrutinize functional roles and associated molecular mechanisms. Results We observed that high KRT16 expression significantly correlated with poorer pathological differentiation, advanced stages, increased lymph nodes metastasis, and decreased survival rate from several Taiwanese OSCC patient cohorts. We further revealed that miR-365-3p could target ETS homologous factor (EHF), a KRT16 transcription factor, to decrease migration, invasion, metastasis and chemoresistance in OSCC cells via inhibition of KRT16. Under confocal microscopic examination, c-Met was found possibly partially associates with KRT16 through β5-integrin. Colocalization of these three proteins may facilitate c-Met and β5-integrin–mediated signaling in OSCC cells. Depletion of KRT16 led to increased protein degradation of β5-integrin and c-Met through a lysosomal pathway leading to inhibition of their downstream Src/STAT3/FAK/ERK signaling in OSCC cells. Knockdown of KRT16 enhanced chemosensitivity of OSCC towards 5-fluorouracil (5-FU). Various combination of c-Met inhibitor (foretinib), protein tyrosine kinase inhibitor (genistein), β5-integrin antibody, and 5-FU markedly augmented cytotoxic effects in OSCC cells as well as tumor killing effects in vitro and in vivo. Conclusions Our data indicate that targeting a novel miR-365-3p/EHF/KRT16/β5-integrin/c-Met signaling pathway could improve treatment efficacy in OSCC

    Effects of Caloric Restriction with Protein Supplementation on Plasma Protein Profiles in Middle-Aged Women with Metabolic Syndrome—A Preliminary Open Study

    No full text
    Background: Clinical studies have demonstrated that higher protein intake based on caloric restriction (CR) alleviates metabolic abnormalities. However, no study has examined the effects of plasma protein profiles on caloric restriction with protein supplementation (CRPS) in metabolic syndrome (MetS). Therefore, using a proteomic perspective, this pilot study investigated whether CRPS ameliorated metabolic abnormalities associated with MetS in middle-aged women. Methods: Plasma samples of middle-aged women with MetS in CR (n = 7) and CRPS (n = 6) groups for a 12-week intervention were obtained and their protein profiles were analysed. Briefly, blood samples from qualified participants were drawn before and after the dietary treatment. Anthropometric, clinical, and biochemical variables were measured and correlated with plasma proteomics. Results: In results, we found that body mass index, total body fat, and fasting blood glucose decreased significantly after the interventions but were not different between the CR and CRPS groups. After liquid chromatography–tandem mass spectrometry analysis, the relative plasma levels of alpha-2-macroglobulin (A2M), C4b-binding protein alpha chain (C4BPA), complement C1r subcomponent-like protein (C1RL), complement component C6 (C6), complement component C8 gamma chain (C8G), and vitamin K-dependent protein S (PROS) were significantly different between the CRPS and CR groups. These proteins are involved in inflammation, the immune system, and coagulation responses. Moreover, blood low-density lipoprotein cholesterol levels were significantly and positively correlated with C6 plasma levels in both groups. Conclusions: These findings suggest that CRPS improves inflammatory responses in middle-aged women with MetS. Specific plasma protein expression (i.e., A2M, C4BPA, C1RL, C6, C8G, and PROS) associated with the complement system was highly correlated with fasting blood glucose (FBG), blood lipids (BLs), and body fat

    Effect of high-flow nasal therapy during early pulmonary rehabilitation in patients with severe AECOPD: a randomized controlled study

    No full text
    BACKGROUND: Chronic obstructive pulmonary disease (COPD) is airway inflammation characterized and low daily physical activity. Most pulmonary rehabilitation (PR) programs are often provided to stable patients, but fewer training programs are specific for hospitalized patients with acute exacerbation (AE). Patients with AECOPD experience increased dyspnea sensations and systemic inflammation during exercise training. High-flow nasal therapy (HFNT) reduces the minute volume, lowers the respiratory rate, and decreases the work of breathing. However, it is not clear whether HFNT is efficient during exercise training. In this study, we investigated the effects of HFNT during exercise training in an early PR program among hospitalized patients with severe AECOPD. METHODS: We enrolled COPD patients hospitalized due to AE. They were randomized into two groups according to their status into HFNT PR and non-HFNT PR groups. This study collected basic data, and also assessed a pulmonary function test, 6-min walking test, blood inflammatory biomarkers, and arterial gas analysis at the baseline, and at 4 and 12 weeks of the intervention. Data were analyzed using SPSS statistical software. RESULT: We recruited 44 AECOPD patients who completed the 12-week PR program. The HFNT PR program produced significant improvements in exercise tolerance as assessed by the 6-min walking distance (6MWD), reduced dyspnea sensations in the modified Medical Research Council (mMRC), and decreased systemic inflammation as evidenced by the a lower C-reactive protein (CRP) level. A reduction in the length of hospitalization was achieved with PR in the 1-year follow-up in the two groups. The HFNT PR group showed better trends of reduced air trapping in the delta inspiration capacity (IC) and an increased quality of life according to the COPD assessment test (CAT) than did the non-HFNT PR group. CONCLUSIONS: HFNT during exercise training in early PR increases exercise tolerance and reduces systemic inflammation in hospitalized patients with severe AECOPD

    Risk of Chronic Kidney Disease in Pneumoconiosis: Results from a Retrospective Cohort Study (2008–2019)

    No full text
    Background: Pneumoconiosis has considerable comorbidities, most notably pulmonary and cardiovascular diseases. However, the relationship between pneumoconiosis and chronic kidney disease (CKD) is largely unknown. The present study aimed to use a retrospective cohort study design to further clarify the association between pneumoconiosis and subsequent CKD risk. Methods: This is a nationwide, population-based, retrospective cohort study that used data from Taiwan’s National Health Insurance Database. Between 2008 and 2018, 17,952 newly diagnosed patients were included in the pneumoconiosis cohort, while 71,808 individuals without pneumoconiosis were included in the comparison cohort, with a propensity score matching for age, gender, and date of pneumoconiosis diagnosis. The development of CKD was monitored until the end of 2019. The risk was assessed using Cox proportional hazard regression models. Results: After controlling for age, gender, and comorbidity, the overall incidence of CKD was 1.69-fold higher in the pneumoconiosis cohort than in the comparison cohort (19.71 vs. 11.76 per 1000 person-years, respectively, p p < 0.001). Conclusion: Patients with pneumoconiosis had a significantly higher risk of developing CKD than those without. Pneumoconiosis combined with hypertension, hyperglycemia, or hyperlipidemia would increase the risk even further. More studies are required to understand the possible pathophysiological mechanisms

    Effects of Resveratrol on Muscle Inflammation, Energy Utilisation, and Exercise Performance in an Eccentric Contraction Exercise Mouse Model

    No full text
    Eccentric contraction can easily cause muscle damage and an inflammatory response, which reduces the efficiency of muscle contraction. Resveratrol causes anti-inflammatory effects in muscles, accelerates muscle repair, and promotes exercise performance after contusion recovery. However, whether resveratrol provides the same benefits for sports injuries caused by eccentric contraction is unknown. Thus, we explored the effects of resveratrol on inflammation and energy metabolism. In this study, mice were divided into four groups: a control group, an exercise group (EX), an exercise with low-dose resveratrol group (EX + RES25), and an exercise with high-dose resveratrol group (EX + RES150). The results of an exhaustion test showed that the time before exhaustion of the EX + RES150 group was greater than that of the EX group. Tumour necrosis factor-α (Tnfα) mRNA expression was lower in the EX + RES150 group than in the EX group. The energy utilisation of the EX + RES150 group was greater than that of the EX + RES25 group in different muscles. High-dose resveratrol intervention decreased Tnfα mRNA expression and enhanced the mRNA expressions of sirtuin 1, glucose transporter 4, AMP-activated protein kinase α1, and AMP-activated protein kinase α2 in muscles. These results revealed that high-dose resveratrol supplementation can reduce inflammation and oxidation and improve energy utilisation during short-duration high-intensity exercise

    Attenuation of Chronic Stress-Induced Depressive-like Symptoms by Fish Oil via Alleviating Neuroinflammation and Impaired Tryptophan Metabolism in Aging Rats

    No full text
    The prevalence of depression is increasing, and geriatric depression, in particular, is difficult to recognize and treat. Depression in older adults is often accompanied by neuroinflammation in the central nervous system (CNS). Neuroinflammation affects the brain’s physiological and immune functions through several pathways and induces depressive symptoms. This study investigated the relationship among depression, neuroinflammation, and fish oil supplementation. Thirty-six male Sprague–Dawley rats were used in an aging-related depression animal model to simulate geriatric depression. Cognitive function, depressive-like symptoms, peripheral nervous system and CNS inflammation status, and the tryptophan-related metabolic pathway were analyzed. The geriatric depression animal model was associated with depressive-like behaviors and cognitive impairment. The integrity of the blood–brain barrier was compromised, resulting in increased expression of ionized calcium-binding adapter molecule 1 and the glial fibrillary acidic protein in the brain, indicating increased neuroinflammation. Tryptophan metabolism was also negatively affected. The geriatric-depressive-like rats had high levels of neurotoxic 5-hydroxyindoleacetic acid and kynurenine in their hippocampus. Fish oil intake improved depressive-like symptoms and cognitive impairment, reduced proinflammatory cytokine expression, activated the brain’s glial cells, and increased the interleukin-10 level in the prefrontal cortex. Thus, fish oil intervention could ameliorate abnormal neurobehaviors and neuroinflammation and elevate the serotonin level in the hippocampus

    Rice Bran Reduces Weight Gain and Modulates Lipid Metabolism in Rats with High-Energy-Diet-Induced Obesity

    No full text
    Obesity has become an epidemic worldwide. It is a complex metabolic disorder associated with many serious complications and high morbidity. Rice bran is a nutrient-dense by product of the rice milling process. Asia has the world&rsquo;s highest rice production (90% of the world&rsquo;s rice production); therefore, rice bran is inexpensive in Asian countries. Moreover, the high nutritional value of the rice bran suggests its potential as a food supplement promoting health improvements, such as enhancing brain function, lowering blood pressure, and regulating pancreatic secretion. The present study evaluated the anti-obesity effect of rice bran in rats with high-energy diet (HED)-induced obesity. Male Sprague&ndash;Dawley rats were randomly divided into one of five diet groups (n = 10 per group) and fed the following for eight weeks: Normal diet with vehicle treatment, HED with vehicle, rice bran-0.5X (RB-0.5X) (2% wt/wt rice bran), RB-1.0X (4% wt/wt rice bran), and RB-2.0X (8% wt/wt rice bran). Rice bran (RB-1.0X and RB-2.0X groups) markedly reduced obesity, including body weight and adipocyte size. In addition, treating rats with HED-induced obesity using rice bran significantly reduced the serum uric acid and glucose as well as the liver triglyceride (TG) and total cholesterol (TC). Furthermore, administration of an HED to obese rats significantly affected hepatic lipid homeostasis by increasing phosphotidylcholine (PC; 18:2/22:6), diacylglycerol (DG; 18:2/16:0), DG (18:2/18:1), DG (18:1/16:0), cholesteryl ester (CE; 20:5), CE (28:2), TG (18:0/16:0/18:3), and glycerol-1-2-hexadecanoate 3-octadecanoate. However, the rice bran treatment demonstrated an anti-adiposity effect by partially reducing the HED-induced DG (18:2/18:1) and TG (18:0/16:0/18:3) increases in obese rats. In conclusion, rice bran could act as an anti-obesity supplement in rats, as demonstrated by partially reducing the HED-induced DG and TG increases in obese rats, and thus limit the metabolic diseases associated with obesity and the accumulation of body fat and hepatic lipids in rats
    corecore