28 research outputs found

    The effect of tumour necrosis factor-α (TNF-α) muteins on human neutrophils in vitro

    Get PDF
    Tumour necrosis factor-α (TNF-α) has been implicated as an important inflammatory mediator. In vitro, TNF-α is reported to activate human polymorphonuclear neutrophils (PMN), inducing responses such as phagocytic activity, degranulation and oxidative metabolism. Biological responses to TNF-α are initiated by its binding to specific cell surface receptors, and various studies have shown that the major TNF receptor species on PMN is the 75 kDa receptor. To verify the suggestion that the receptor binding domain includes the region close to the N-terminus of the TNF-α molecule, four TNF-α derivatives termed muteins were constructed, using a synthetic cDNA fragment substituting the N-terminal 3–7 selected hydrophilic or hydrophobic amino acids in the original TNF-α genomic DNA. Binding of muteins to PMN was assessed using monoclonal antibodies recognizing either the 55 kDa (p55) or the 75 kDa (p75) TNF receptor subtypes. Blocking by muteins of anti-p75 antibody binding to PMN was as expected from their N-terminal amino acid composition and hydrophilic properties. Hydrophilic muteins competed well with anti-TNF receptor antibodies for binding to the p75 receptor. In contrast, hydrophobic muteins were unable to block anti-p75 binding. Similarly, degranulation, chemiluminescence or enhancement of the PMN response to specific stimuli by the muteins correlated with the hydrophilic properties of the muteins. The significance of these observations in relation to the molecular structure of TNF-α is discussed

    The Worker Honeybee Fat Body Proteome Is Extensively Remodeled Preceding a Major Life-History Transition

    Get PDF
    Honeybee workers are essentially sterile female helpers that make up the majority of individuals in a colony. Workers display a marked change in physiology when they transition from in-nest tasks to foraging. Recent technological advances have made it possible to unravel the metabolic modifications associated with this transition. Previous studies have revealed extensive remodeling of brain, thorax, and hypopharyngeal gland biochemistry. However, data on changes in the abdomen is scarce. To narrow this gap we investigated the proteomic composition of abdominal tissue in the days typically preceding the onset of foraging in honeybee workers

    The effects of tumor necrosis factor (TNF) derivatives on TNF receptors.

    No full text
    The pleiotropic cytokine TNF has been implicated in the regulation of many immune and inflammatory responses in vivo, and in addition exerts a wide range of effects on target cells in vitro. However, although two cell surface receptors for TNF have been identified, and their cDNAs cloned, the amino acid residues necessary for the biological activity of TNF have not been characterized. We have therefore constructed derivatives of TNF termed 'muteins', in which the first 3 to 7 amino acids of native TNF-alpha have been replaced, using synthetic cDNA expressed in E. coli. In the present study we compare the effects of native TNF-alpha and muteins III, IV, V and VI in several different in vitro systems and in one in vivo model. We observed binding to the p75 TNF receptor on Jijoye Burkitt lymphoma cells with native TNF-alpha and mutein III alone, whereas the p55 TNF receptor on the human epithelioid carcinoma cell line HeLa bound TNF-alpha, mutein III and mutein V. Muteins IV and VI failed to recognize either TNF receptor. WEHI 164 fibrosarcoma cells were killed by muteins III, V and VI. Human umbilical vein endothelial cells responded to native TNF-alpha and to muteins III, IV and V, but not to mutein VI, by increasing the surface expression of ICAM-1 antigen and secretion of the cytokines GM-CSF and IL-6. All four compounds were pro-inflammatory in a mouse in vivo model. The results presented in this report confirm that N-terminal amino acids are critical for both receptor binding and biological activity of TNF-alpha.(ABSTRACT TRUNCATED AT 250 WORDS

    The effects of tumor necrosis factor (TNF) derivatives on TNF receptors.

    No full text
    The pleiotropic cytokine TNF has been implicated in the regulation of many immune and inflammatory responses in vivo, and in addition exerts a wide range of effects on target cells in vitro. However, although two cell surface receptors for TNF have been identified, and their cDNAs cloned, the amino acid residues necessary for the biological activity of TNF have not been characterized. We have therefore constructed derivatives of TNF termed 'muteins', in which the first 3 to 7 amino acids of native TNF-alpha have been replaced, using synthetic cDNA expressed in E. coli. In the present study we compare the effects of native TNF-alpha and muteins III, IV, V and VI in several different in vitro systems and in one in vivo model. We observed binding to the p75 TNF receptor on Jijoye Burkitt lymphoma cells with native TNF-alpha and mutein III alone, whereas the p55 TNF receptor on the human epithelioid carcinoma cell line HeLa bound TNF-alpha, mutein III and mutein V. Muteins IV and VI failed to recognize either TNF receptor. WEHI 164 fibrosarcoma cells were killed by muteins III, V and VI. Human umbilical vein endothelial cells responded to native TNF-alpha and to muteins III, IV and V, but not to mutein VI, by increasing the surface expression of ICAM-1 antigen and secretion of the cytokines GM-CSF and IL-6. All four compounds were pro-inflammatory in a mouse in vivo model. The results presented in this report confirm that N-terminal amino acids are critical for both receptor binding and biological activity of TNF-alpha.(ABSTRACT TRUNCATED AT 250 WORDS

    The effect of tumour necrosis factor-alpha (TNF-alpha) muteins on human neutrophils in vitro.

    No full text
    Tumour necrosis factor-alpha (TNF-alpha) has been implicated as an important inflammatory mediator. In vitro, TNF-alpha is reported to activate human polymorphonuclear neutrophils (PMN), inducing responses such as phagocytic activity, degranulation and oxidative metabolism. Biological responses to TNF-alpha are initiated by its binding to specific cell surface receptors, and various studies have shown that the major TNF receptor species on PMN is the 75 kDa receptor. To verify the suggestion that the receptor binding domain includes the region close to the N-terminus of the TNF-alpha molecule, four TNF-alpha derivatives termed muteins were constructed, using a synthetic cDNA fragment substituting the N-terminal 3-7 selected hydrophilic or hydrophobic amino acids in the original TNF-alpha genomic DNA. Binding of muteins to PMN was assessed using monoclonal antibodies recognizing either the 55 kDa (p55) or the 75 kDa (p75) TNF receptor subtypes. Blocking by muteins of anti-p75 antibody binding to PMN was as expected from their N-terminal amino acid composition and hydrophilic properties. Hydrophilic muteins competed well with anti-TNF receptor antibodies for binding to the p75 receptor. In contrast, hydrophobic muteins were unable to block anti-p75 binding. Similarly, degranulation, chemiluminescence or enhancement of the PMN response to specific stimuli by the muteins correlated with the hydrophilic properties of the muteins. The significance of these observations in relation to the molecular structure of TNF-alpha is discussed
    corecore