496 research outputs found

    Comment on Counting Black Hole Microstates Using String Dualities

    Full text link
    We discuss a previous attempt at a microscopic counting of the entropy of asymptotically flat non-extremal black-holes. This method used string dualities to relate 4 and 5 dimensional black holes to the BTZ black hole. We show how the dualities can be justified in a certain limit, equivalent to a near horizon limit, but the resulting spacetime is no longer asymptotically flat.Comment: 10 pages, harvmac. v(2) typo correcte

    Bound States and Power Counting in Effective Field Theories

    Get PDF
    The problem of bound states in effective field theories is studied. A rescaled version of nonrelativistic effective field theory is formulated which makes the velocity power counting of operators manifest. Results obtained using the rescaled theory are compared with known results from NRQCD. The same ideas are then applied to study Yukawa bound states in 1+1 and 3+1 dimensions, and to analyze when the Yukawa potential can be replaced by a delta-function potential. The implications of these results for the study of nucleon-nucleon scattering in chiral perturbation theory is discussed.Comment: 23 pages, eps figures, uses revte

    Quantum Theory of Noncommutative Fields

    Full text link
    Generalizing the noncommutative harmonic oscillator construction, we propose a new extension of quantum field theory based on the concept of "noncommutative fields". Our description permits to break the usual particle-antiparticle degeneracy at the dispersion relation level and introduces naturally an ultraviolet and an infrared cutoff. Phenomenological bounds for these new energy scales are given.Comment: LaTeX file, JHEP3.cls, subequations.sty; 12 pages, no figures. Final version published in JHEP with some references adde

    Nuttier Bubbles

    Full text link
    We construct new explicit solutions of general relativity from double analytic continuations of Taub-NUT spacetimes. This generalizes previous studies of 4-dimensional nutty bubbles. One 5-dimensional locally asymptotically AdS solution in particular has a special conformal boundary structure of AdS3Ă—S1AdS_3\times S^1. We compute its boundary stress tensor and relate it to the properties of the dual field theory. Interestingly enough, we also find consistent 6-dimensional bubble solutions that have only one timelike direction. The existence of such spacetimes with non-trivial topology is closely related to the existence of the Taub-NUT(-AdS) solutions with more than one NUT charge. Finally, we begin an investigation of generating new solutions from Taub-NUT spacetimes and nuttier bubbles. Using the so-called Hopf duality, we provide new explicit time-dependent backgrounds in six dimensions.Comment: 32 pages, 1 figure; v.3. typos corrected. Matches the published versio

    Photon CT Scanning of Advanced Ceramic Materials

    Get PDF
    Advanced ceramic materials (e. g. Si3N4, ZrO2, SiC, A12O3) are being developed for high temperature applications in advanced heat engines and high temperature heat recovery systems [1]. Although fracture toughness has been a constant problem, advanced ceramics are now being developed with fracture toughnesses close to those of metals [2]. Small size flaws (10–200 μm), small non-uniformities in density distributions (0.1–2%) present as long-range density gradients, and porous regions which can be seen as localized areas of slightly lower density, are critical in most ceramics. The need to detect these small flaws is causing a significant effort to be devoted towards nondestructive evaluation. Detection of “defects” such as those noted in engineering ceramics has presented problems for conventional non-destructive evaluation methods [3]

    On fluctuations of closed string tachyon solitons

    Full text link
    We discuss fluctuations on solitons in the dilaton/graviton/tachyon system using the low energy effective field theory approach. It is shown that closed string solitons are free of tachyons in this approximation, regardless of the exact shape of the tachyon potential.Comment: 13 pages, 1 figure, uses JHEP3.cl

    Random walks and the Hagedorn transition

    Full text link
    We study details of the approach to the Hagedorn temperature in string theory in various static spacetime backgrounds. We show that the partition function for a {\it single} string at finite temperature is the torus amplitude restricted to unit winding around Euclidean time. We use the worldsheet path integral to derive the statement that the the sum over random walks of the thermal scalar near the Hagedorn transition is precisely the image under a modular transformation of the sum over spatial configurations of a single highly excited string. We compute the radius of gyration of thermally excited strings in AdSDĂ—SnAdS_D\times S^n. We show that the winding mode indicates an instability despite the AdS curvature at large radius, and that the negative mass squared decreases with decreasing AdS radius, much like the type 0 tachyon. We add further arguments to statements by Barbon and Rabinovici, and by Adams {\it et. al.}, that the Euclidean AdS black hole can thought of as a condensate of the thermal scalar. We use this to provide circumstantial evidence that the condensation of the thermal scalar decouples closed string modes.Comment: 34 pages (7 of references), 5 figures. v2: Reference added, grant acknowledgement added, typos correcte

    Asymptotic distribution of quasi-normal modes for Kerr-de Sitter black holes

    Full text link
    We establish a Bohr-Sommerfeld type condition for quasi-normal modes of a slowly rotating Kerr-de Sitter black hole, providing their full asymptotic description in any strip of fixed width. In particular, we observe a Zeeman-like splitting of the high multiplicity modes at a=0 (Schwarzschild-de Sitter), once spherical symmetry is broken. The numerical results presented in Appendix B show that the asymptotics are in fact accurate at very low energies and agree with the numerical results established by other methods in the physics literature. We also prove that solutions of the wave equation can be asymptotically expanded in terms of quasi-normal modes; this confirms the validity of the interpretation of their real parts as frequencies of oscillations, and imaginary parts as decay rates of gravitational waves.Comment: 66 pages, 6 figures; journal version (to appear in Annales Henri Poincar\'e

    Using multiple natural tags provides evidence for extensive larval dispersal across space and through time in summer flounder

    Get PDF
    Dispersal sets the fundamental scales of ecological and evolutionary dynamics and has important implications for population persistence. Patterns of marine dispersal remain poorly understood, partly because dispersal may vary through time and often homogenizes allele frequencies. However, combining multiple types of natural tags can provide more precise dispersal estimates, and biological collections can help to reconstruct dispersal patterns through time. We used single nucleotide polymorphism genotypes and otolith core microchemistry from archived collections of larval summer flounder (Paralichthys dentatus, n = 411) captured between 1989 and 2012 at five locations along the US East coast to reconstruct dispersal patterns through time. Neither genotypes nor otolith microchemistry alone were sufficient to identify the source of larval fish. However, microchemistry identified clusters of larvae (n = 3–33 larvae per cluster) that originated in the same location, and genetic assignment of clusters could be made with substantially more confidence. We found that most larvae probably originated near a biogeographical break (Cape Hatteras) and that larvae were transported in both directions across this break. Larval sources did not shift north through time, despite the northward shift of adult populations in recent decades. Our novel approach demonstrates that summer flounder dispersal is widespread throughout their range, on both intra- and intergenerational timescales, and may be a particularly important process for synchronizing population dynamics and maintaining genetic diversity during an era of rapid environmental change. Broadly, our results reveal the value of archived collections and of combining multiple natural tags to understand the magnitude and directionality of dispersal in species with extensive gene flow

    Moduli and (un)attractor black hole thermodynamics

    Get PDF
    We investigate four-dimensional spherically symmetric black hole solutions in gravity theories with massless, neutral scalars non-minimally coupled to gauge fields. In the non-extremal case, we explicitly show that, under the variation of the moduli, the scalar charges appear in the first law of black hole thermodynamics. In the extremal limit, the near horizon geometry is AdS2Ă—S2AdS_2\times S^2 and the entropy does not depend on the values of moduli at infinity. We discuss the attractor behaviour by using Sen's entropy function formalism as well as the effective potential approach and their relation with the results previously obtained through special geometry method. We also argue that the attractor mechanism is at the basis of the matching between the microscopic and macroscopic entropies for the extremal non-BPS Kaluza-Klein black hole.Comment: 36 pages, no figures, V2: minor changes, misprints corrected, expanded references; V3: sections 4.3 and 4.5 added; V4: minor changes, matches the published versio
    • …
    corecore