30,317 research outputs found

    Contrast Interferometry Using Bose-Einstein Condensates to Measure h/m and the Fine Structure Constant

    Full text link
    The kinetic energy of an atom recoiling due to absorption of a photon was measured as a frequency using an interferometric technique called ``contrast interferometry''. Optical standing wave pulses were used as atom-optical elements to create a symmetric three-path interferometer with a Bose-Einstein condensate. The recoil phase accumulated in different paths was measured using a single-shot detection technique. The scheme allows for additional photon recoils within the interferometer and its symmetry suppresses several random and systematic errors including those from vibrations and ac Stark shifts. We have measured the photon recoil frequency of sodium to 77 ppm precision, using a simple realization of this scheme. Plausible extensions should yield a sufficient precision to bring within reach a ppb-level determination of h/mh/m and the fine structure constant α\alpha

    Harnessing shared identities to mobilise resilient responses to the COVID-19 pandemic

    Get PDF
    Shared social identifications (family, community, nation, humanity) predict normative actions and psychological well-being, and can be invoked discursively by leaders to mobilise their followers. We illustrate the potential for harnessing shared identities to mobilise resilient public responses against COVID-19. Study 1 explored which patterns of social identification predicted protective behaviours (personal hygiene, physical distancing), prosocial actions (helping proximal and distal others), and psychological well-being (mental well-being, depressive symptoms, anxiety), among 560 UK adults surveyed during lockdown. Study 2 contrasted Prime Minister Ardern’s use of identity-based rhetoric to mobilise New Zealanders, with Prime Minister Johnson’s use of individualistic appeals to the UK public. Our findings suggest how political leaders might beneficially use social identities in communications about extreme events

    The Triple Pulsar System PSR B1620-26 in M4

    Get PDF
    The millisecond pulsar PSR B1620-26, in the globular cluster M4, has a white dwarf companion in a half-year orbit. Anomalously large variations in the pulsar's apparent spin-down rate have suggested the presence of a second companion in a much wider orbit. Using timing observations made on more than seven hundred days spanning eleven years, we confirm this anomalous timing behavior. We explicitly demonstrate, for the first time, that a timing model consisting of the sum of two non-interacting Keplerian orbits can account for the observed signal. Both circular and elliptical orbits are allowed, although highly eccentric orbits require improbable orbital geometries. The motion of the pulsar in the inner orbit is very nearly a Keplerian ellipse, but the tidal effects of the outer companion cause variations in the orbital elements. We have measured the change in the projected semi-major axis of the orbit, which is dominated by precession-driven changes in the orbital inclination. This measurement, along with limits on the rate of change of other orbital elements, can be used to significantly restrict the properties of the outer orbit. We find that the second companion most likely has a mass m~0.01 Msun --- it is almost certainly below the hydrogen burning limit (m<0.036 Msun, 95% confidence) --- and has a current distance from the binary of ~35 AU and orbital period of order one hundred years. Circular (and near-circular) orbits are allowed only if the pulsar magnetic field is ~3x10^9 G, an order of magnitude higher than a typical millisecond pulsar field strength. In this case, the companion has mass m~1.2x10^-3 Msun and orbital period ~62 years.Comment: 12 pages, 6 figures, 3 tables. Very minor clarifications and rewording. Accepted for publication in the Astrophys.

    Sexual Wellness and Rare Disease Considerations: A Behavioral Case Conceptualization and Approach to Counseling Treatment

    Get PDF
    Sexual wellness is infrequently addressed with individuals with a rare disease. Counselors must be competent in working with sexual wellness issues, especially those related to medical conditions, since clients may not share those concerns with healthcare providers. This article presents a case scenario involving a client living with a rare disease called Hereditary Angioedema, the symptoms of which present challenges to her intimate and sexual relationship with her partner due to unpredictable and painful swelling. A behavioral theoretical lens is used to conceptualize the case scenario and inform treatment. Implications for counselor competency, interdisciplinary collaboration, and client empowerment toward advocacy are discussed

    Measurement of Relativistic Orbital Decay in the PSR B1534+12 Binary System

    Get PDF
    We have made timing observations of binary pulsar PSR B1534+12 with radio telescopes at Arecibo, Green Bank, and Jodrell Bank. By combining our new observations with data collected up to seven years earlier, we obtain a significantly improved solution for the astrometric, spin, and orbital parameters of the system. For the first time in any binary pulsar system, no fewer than five relativistic or "post-Keplerian" orbital parameters are measurable with useful accuracies in a theory-independent way. We find the orbital period of the system to be decreasing at a rate close to that expected from gravitational radiation damping, according to general relativity, although the precision of this test is limited to about 15% by the otherwise poorly known distance to the pulsar. The remaining post-Keplerian parameters are all consistent with one another and all but one of them have fractional accuracies better than 1%. By assuming that general relativity is the correct theory of gravity, at least to the accuracy demanded by this experiment, we find the masses of the pulsar and companion star each to be 1.339+-0.003 Msun and the system's distance to be d = 1.1+-0.2 kpc, marginally larger than the d ~ 0.7 kpc estimated from the dispersion measure. The increased distance reduces estimates of the projected rate of coalescence of double neutron-star systems in the universe, a quantity of considerable interest for experiments with terrestrial gravitational wave detectors such as LIGO.Comment: 17 pages, 4 figures, submitted to the Ap

    Correlation functions of small-scale fluctuations of the interplanetary magnetic field

    Full text link
    The Interplanetary Magnetic Field shows complex spatial and temporal variations. Single spacecraft measurements reveal only a one dimensional section of this rich four dimensional phenomenon. Multi-point measurements of the four Cluster spacecraft provide a unique tool to study the spatiotemporal structure of the field. Using Cluster data we determined three dimensional correlation functions of the fluctuations. By means of the correlation function one can describe and measure field variations. Our results can be used to verify theoretical predictions, to understand the formation and nature of solar wind turbulence. We found that the correlation length varies over almost six orders of magnitude. The IMF turbulence shows significant anisotropy with two distinct populations. In certain time intervals the ratio of the three axes of the correlation ellipse is 1/2.2/6 while in the remaining time we found extremely high correlation along one axis. We found favoured directions in the orientation of the correlation ellipsoids.Comment: accepted to Solar Physics on June 14, 2010. 10 pages, 8 figure
    • 

    corecore