25,199 research outputs found

    Twists and Wilson Loops in the String Theory of Two Dimensional QCD

    Full text link
    Many Texo's have been corrected and a reference added.Comment: 57 pages, CERN-TH. 6827/93, PUPT-1382,LBL-33458, UCB-PTH-93/0

    Comparing the results of an analytical model of the no-vent fill process with no-vent fill test results for a 4.96 cubic meters (175 cubic feet) tank

    Get PDF
    The NASA Lewis Research Center (NASA/LeRC) have been investigating a no-vent fill method for refilling cryogenic storage tanks in low gravity. Analytical modeling based on analyzing the heat transfer of a droplet has successfully represented the process in 0.034 m and 0.142 cubic m commercial dewars using liquid nitrogen and hydrogen. Recently a large tank (4.96 cubic m) was tested with hydrogen. This lightweight tank is representative of spacecraft construction. This paper presents efforts to model the large tank test data. The droplet heat transfer model is found to over predict the tank pressure level when compared to the large tank data. A new model based on equilibrium thermodynamics has been formulated. This new model is compared to the published large scale tank's test results as well as some additional test runs with the same equipment. The results are shown to match the test results within the measurement uncertainty of the test data except for the initial transient wall cooldown where it is conservative (i.e., overpredicts the initial pressure spike found in this time frame)

    Small experiments for the maturation of orbital cryogenic transfer technologies

    Get PDF
    The no-vent method is a promising approach to handling the problems of low-g venting during propellant transfer. A receiver tank is first cooled to remove thermal energy from the tank wall and the resultant vapor vented overboard. The nozzles mix the incoming liquid and residual vapor in the tank maintaining a thermodynamic state which allows the tank to fill with liquid without venting. Ground based testing at NASA Lewis Research Center (LeRC) has demonstrated the no-vent fill process and attempted to bound its low-gravity performance. But, low-gravity testing is required to validate the method. As an alternative to using a dedicated spacecraft for validation, several small scale experiments to study no-vent fill in low-g were formulated. Cost goals quickly limited the search to two possibilities: a secondary payload on the space shuttle, or a small scale sounding rocket experiment. The key issues of small scale experimentation are discussed, and a conceptual design of a sounding rocket experiment with liquid hydrogen for studying the fill process is presented

    Improved thermodynamic modeling of the no-vent fill process and correlation with experimental data

    Get PDF
    The United States' plans to establish a permanent manned presence in space and to explore the Solar System created the need to efficiently handle large quantities of subcritical cryogenic fluids, particularly propellants such as liquid hydrogen and liquid oxygen, in low- to zero-gravity environments. One of the key technologies to be developed for fluid handling is the ability to transfer the cryogens between storage and spacecraft tanks. The no-vent fill method was identified as one way to perform this transfer. In order to understand how to apply this method, a model of the no-vent fill process is being developed and correlated with experimental data. The verified models then can be used to design and analyze configurations for tankage and subcritical fluid depots. The development of an improved macroscopic thermodynamic model is discussed of the no-vent fill process and the analytical results from the computer program implementation of the model are correlated with experimental results for two different test tanks

    On the validity and breakdown of the Onsager symmetry in mesoscopic conductors interacting with environments

    Full text link
    We investigate magnetic-field asymmetries in the linear transport of a mesoscopic conductor interacting with its environment. Interestingly, we find that the interaction between the two systems causes an asymmetry only when the environment is out of equilibrium. We elucidate our general result with the help of a quantum dot capacitively coupled to a quantum Hall conductor and discuss the asymmetry dependence on the environment bias and induced dephasing.Comment: 4 pages, 4 figures; discussions clarified; published versio

    A video method for quantifying size distribution, density, and three-dimensional spatial structure of reef fish spawning aggregations

    Get PDF
    There is a clear need to develop fisheries independent methods to quantify individual sizes, density, and three dimensional characteristics of reef fish spawning aggregations for use in population assessments and to provide critical baseline data on reproductive life history of exploited populations. We designed, constructed, calibrated, and applied an underwater stereo-video system to estimate individual sizes and three dimensional (3D) positions of Nassau grouper (Epinephelus striatus) at a spawning aggregation site located on a reef promontory on the western edge of Little Cayman Island, Cayman Islands, BWI, on 23 January 2003. The system consists of two free-running camcorders mounted on a meter-long bar and supported by a SCUBA diver. Paired video “stills” were captured, and nose and tail of individual fish observed in the field of view of both cameras were digitized using image analysis software. Conversion of these two dimensional screen coordinates to 3D coordinates was achieved through a matrix inversion algorithm and calibration data. Our estimate of mean total length (58.5 cm, n = 29) was in close agreement with estimated lengths from a hydroacoustic survey and from direct measures of fish size using visual census techniques. We discovered a possible bias in length measures using the video method, most likely arising from some fish orientations that were not perpendicular with respect to the optical axis of the camera system. We observed 40 individuals occupying a volume of 33.3 m3, resulting in a concentration of 1.2 individuals m–3 with a mean (SD) nearest neighbor distance of 70.0 (29.7) cm. We promote the use of roving diver stereo-videography as a method to assess the size distribution, density, and 3D spatial structure of fish spawning aggregations

    Nassau grouper (Epinephelus striatus) spawning aggregations: hydroacoustic surveys and geostatistical analysis

    Get PDF
    With the near extinction of many spawning aggregations of large grouper and snapper throughout the Caribbean, Gulf of Mexico, and tropical Atlantic, we need to provide baselines for their conservation. Thus, there is a critical need to develop techniques for rapidly assessing the remaining known (and unknown) aggregations. To this end we used mobile hydroacoustic surveys to estimate the density, spatial extent, and total abundance of a Nassau grouper spawning aggregation at Little Cayman Island, Cayman Islands, BWI. Hydroacoustic estimates of abundance, density, and spatial extent were similar on two sampling occasions. The location and approximate spatial extent of the Nassau grouper spawning aggregation near the shelf-break was corroborated by diver visual observations. Hydroacoustic density estimates were, overall, three-times higher than the average density observed by divers; however, we note that in some instances diver-estimated densities in localized areas were similar to hydroacoustic density estimates. The resolution of the hydroacoustic transects and geostatistical interpolation may have resulted in over-estimates in fish abundance, but still provided reasonable estimates of total spatial extent of the aggregation. Limitations in bottom time for scuba and visibility resulted in poor coverage of the entire Nassau grouper aggregation and low estimates of abundance when compared to hydroacoustic estimates. Although the majority of fish in the aggregation were well off bottom, fish that were sometimes in close proximity to the seafloor were not detected by the hydroacoustic survey. We conclude that diver observations of fish spawning aggregations are critical to interpretations of hydroacoustic surveys, and that hydroacoustic surveys provide a more accurate estimate of overall fish abundance and spatial extent than diver observations. Thus, hydroacoustics is an emerging technology that, when coupled with diver observations, provides a comprehensive survey method for monitoring spawning aggregations of fish

    Timing Measurements of the Relativistic Binary Pulsar PSR B1913+16

    Full text link
    We present results of more than three decades of timing measurements of the first known binary pulsar, PSR B1913+16. Like most other pulsars, its rotational behavior over such long time scales is significantly affected by small-scale irregularities not explicitly accounted for in a deterministic model. Nevertheless, the physically important astrometric, spin, and orbital parameters are well determined and well decoupled from the timing noise. We have determined a significant result for proper motion, μα=1.43±0.13\mu_{\alpha} = -1.43\pm0.13, μδ=0.70±0.13\mu_{\delta}=-0.70\pm0.13 mas yr1^{-1}. The pulsar exhibited a small timing glitch in May 2003, with Δf/f=3.7×1011{\Delta f}/f=3.7\times10^{-11}, and a smaller timing peculiarity in mid-1992. A relativistic solution for orbital parameters yields improved mass estimates for the pulsar and its companion, m_1=1.4398\pm0.0002 \ M_{\sun} and m_2=1.3886\pm0.0002 \ M_{\sun}. The system's orbital period has been decreasing at a rate 0.997±0.0020.997\pm0.002 times that predicted as a result of gravitational radiation damping in general relativity. As we have shown before, this result provides conclusive evidence for the existence of gravitational radiation as predicted by Einstein's theory.Comment: Published in APJ, 722, 1030 (2010
    corecore