32,949 research outputs found

    Probing Solar Convection

    Get PDF
    In the solar convection zone acoustic waves are scattered by turbulent sound speed fluctuations. In this paper the scattering of waves by convective cells is treated using Rytov's technique. Particular care is taken to include diffraction effects which are important especially for high-degree modes that are confined to the surface layers of the Sun. The scattering leads to damping of the waves and causes a phase shift. Damping manifests itself in the width of the spectral peak of p-mode eigenfrequencies. The contribution of scattering to the line widths is estimated and the sensitivity of the results on the assumed spectrum of the turbulence is studied. Finally the theoretical predictions are compared with recently measured line widths of high-degree modes.Comment: 26 pages, 7 figures, accepted by MNRA

    Radiation from the non-extremal fuzzball

    Full text link
    The fuzzball proposal says that the information of the black hole state is distributed throughout the interior of the horizon in a `quantum fuzz'. There are special microstates where in the dual CFT we have `many excitations in the same state'; these are described by regular classical geometries without horizons. Jejjala et.al constructed non-extremal regular geometries of this type. Cardoso et. al then found that these geometries had a classical instability. In this paper we show that the energy radiated through the unstable modes is exactly the Hawking radiation for these microstates. We do this by (i) starting with the semiclassical Hawking radiation rate (ii) using it to find the emission vertex in the CFT (iii) replacing the Boltzman distributions of the generic CFT state with the ones describing the microstate of interest (iv) observing that the emission now reproduces the classical instability. Because the CFT has `many excitations in the same state' we get the physics of a Bose-Einstein condensate rather than a thermal gas, and the usually slow Hawking emission increases, by Bose enhancement, to a classically radiated field. This system therefore provides a complete gravity description of information-carrying radiation from a special microstate of the nonextremal hole.Comment: corrected typo

    The Relationship between the UniProt Knowledgebase (UniProtKB) and the IntAct Molecular Interaction Databases

    Get PDF
    IntAct provides a freely available, open source database system and analysis tools for protein interaction data. All interactions are derived from literature curation or direct user submission and all experimental information relating to binary protein-protein
interactions is entered into the IntAct database by curators, via a web-based editor. Interaction information is added to the SUBUNIT comment and the RP line of the relevant publication within the UniProtKB entry. There may be a single INTERACTION comment present within a UniProtKB entry, which conveys information relevant to binary protein-protein interactions. This is automatically derived from the IntAct database and is updated on a triweekly basis. Interactions can be derived by any appropriate experimental method but must be confirmed by a second interaction if resulting from a single yeast2hybrid experiment. For large-scale experiments, interactions are considered if a high confidence score is assigned by the authors. The INTERACTION line contains a direct link to IntAct that provides detailed information for the experimental support. These lines are not changed manually and any discrepancy is reported to IntAct for updates. There is also a database crossreference line within the UniProtKB entry i.e.: DR IntAct _UniProtKB AC, which directs the user to additional interaction data for that molecule. 
UniProt is supported by grants from the National Institutes of Health, European Commission, Swiss Federal Government and PATRIC BRC.
IntAct is funded by the European Commission under FELICS, contract number 021902 (RII3) within the Research Infrastructure Action of the FP6 "Structuring the European Research Area" Programme

    de Haas-van Alphen effect investigation of the electronic structure of Al substituted MgB_2

    Full text link
    We report a de Haas-van Alphen (dHvA) study of the electronic structure of Al doped crystals of MgB2_2. We have measured crystals with ∼7.5\sim 7.5% Al which have a TcT_c of 33.6 K, (∼14\sim 14% lower than pure MgB2_2). dHvA frequencies for the σ\sigma tube orbits in the doped samples are lower than in pure MgB2_2, implying a 16±216\pm2% reduction in the number of holes in this sheet of Fermi surface. The mass of the quasiparticles on the larger σ\sigma orbit is lighter than the pure case indicating a reduction in electron-phonon coupling constant λ\lambda. These observations are compared with band structure calculations, and found to be in excellent agreement.Comment: 4 pages with figure

    Non-uniqueness in conformal formulations of the Einstein constraints

    Get PDF
    Standard methods in non-linear analysis are used to show that there exists a parabolic branching of solutions of the Lichnerowicz-York equation with an unscaled source. We also apply these methods to the extended conformal thin sandwich formulation and show that if the linearised system develops a kernel solution for sufficiently large initial data then we obtain parabolic solution curves for the conformal factor, lapse and shift identical to those found numerically by Pfeiffer and York. The implications of these results for constrained evolutions are discussed.Comment: Arguments clarified and typos corrected. Matches published versio

    Quasiparticle Relaxation Across a Spin Gap in the Itinerant Antiferromagnet UNiGa5

    Full text link
    Ultrafast time-resolved photoinduced reflectivity is measured for the itinerant antiferromagnet UNiGa5_{5} (TN≈T_{N} \approx85 K) from room temperature to 10 K. The relaxation time τ\tau shows a sharp increase at TNT_{N} consistent with the opening of a spin gap. In addition, the temperature dependence of τ\tau below TNT_{N} is consistent with the opening of a spin gap leading to a quasiparticle recombination bottleneck as revealed by the Rothwarf-Taylor model. This contrasts with canonical heavy fermions such as CeCoIn5_{5} where the recombination bottleneck arises from the hybridization gap.Comment: 5 pages, 5 figure

    Supergravity, Supermembrane and M(atrix) model on PP-Waves

    Full text link
    In the first part of this paper, we study the back-reaction of large-N light cone momentum on the maximally supersymmetric anti-pp-wave background. This gives the type IIA geometry of large-N D0-branes on curved space with fluxes. By taking an appropriate decoupling limit, we conjecture a new duality between string theory on that background and dual field theory on D0-branes which we derive by calculating linear coupling terms. Agreement of decoupling quantities, SO(3) \times SO(6) isometry and Higgs branch on both theories are shown. Also we find whenever dual field theory is weakly coupled, the curvature of the geometry is large. In the second part of this paper, we derive the supermembrane action on a general pp-wave background only through the properties of null Killing vector and through this, derive the Matrix model.Comment: 19 pages, LaTeX. v2: corrected interpretation of supergravity solutio

    An interferometric complementarity experiment in a bulk Nuclear Magnetic Resonance ensemble

    Full text link
    We have experimentally demonstrated the interferometric complementarity, which relates the distinguishability DD quantifying the amount of which-way (WW) information to the fringe visibility VV characterizing the wave feature of a quantum entity, in a bulk ensemble by Nuclear Magnetic Resonance (NMR) techniques. We primarily concern on the intermediate cases: partial fringe visibility and incomplete WW information. We propose a quantitative measure of DD by an alternative geometric strategy and investigate the relation between DD and entanglement. By measuring DD and VV independently, it turns out that the duality relation D2+V2=1D^{2}+V^{2}=1 holds for pure quantum states of the markers.Comment: 13 page, 5 PS figure
    • …
    corecore