1,380 research outputs found

    Multi-layer light-weight protective coating and method for application

    Get PDF
    A thin, light-weight, multi-layer coating is provided for protecting metals and their alloys from environmental attack at high temperatures. A reaction barrier is applied to the metal substrate and a diffusion barrier is then applied to the reaction barrier. A sealant layer may also be applied to the diffusion barrier if desired. The reaction barrier is either non-reactive or passivating with respect to the metal substrate and the diffusion barrier. The diffusion barrier is either non-reactive or passivating with respect to the reaction barrier and the sealant layer. The sealant layer is immiscible with the diffusion barrier and has a softening point below the expected use temperature of the metal

    Identification of a TcpC-TcpQ Outer Membrane Complex Involved in the Biogenesis of the Toxin-Coregulated Pilus of Vibrio cholerae

    Get PDF
    The toxin-coregulated pilus (TCP) of Vibrio cholerae and the soluble TcpF protein that is secreted via the TCP biogenesis apparatus are essential for intestinal colonization. The TCP biogenesis apparatus is composed of at least nine proteins but is largely uncharacterized. TcpC is an outer membrane lipoprotein required for TCP biogenesis that is a member of the secretin protein superfamily. In the present study, analysis of TcpC in a series of strains deficient in each of the TCP biogenesis proteins revealed that TcpC was absent specifically in a tcpQ mutant. TcpQ is a predicted periplasmic protein required for TCP biogenesis. Fractionation studies revealed that the protein is not localized to the periplasm but is associated predominantly with the outer membrane fraction. An analysis of the amount of TcpQ present in the series of tcp mutants demonstrated the inverse of the TcpC result (absence of TcpQ in a tcpC deletion strain). Complementation of the tcpQ deletion restored TcpC levels and TCP formation, and similarly, complementation of tcpC restored TcpQ. Metal affinity pull-down experiments performed using His-tagged TcpC or TcpQ demonstrated a direct interaction between TcpC and TcpQ. In the presence of TcpQ, TcpC was found to form a high-molecular-weight complex that is stable in 2% sodium dodecyl sulfate and at temperatures below 65 degrees C, a characteristic of secretin complexes. Fractionation studies in which TcpC was overexpressed in the absence of TcpQ showed that TcpQ is also required for proper localization of TcpC to the outer membrane

    Physical Linkage of the Vibrio Cholerae Mannose-Sensitive Hemagglutinin Secretory and Structural Subunit Gene Loci: Identification of the Mshg Coding Sequence.

    Get PDF
    Vibrio cholerae O1 expresses a variety of cell surface factors which mediate bacterial adherence and colonization at the intestinal epithelium. The mannose-sensitive hemagglutinin (MSHA), a type IV pilus, is a potential attachment factor of the V. cholerae El Tor biotype. We describe a TnphoA mutant that is defective in its ability to hemagglutinate mouse erythrocytes. The TnphoA insertion maps to a recently identified genetic locus that encodes products that are predicted to be essential for assembly and export of the MSHA pilus. Insertional disruption at this locus in a mshA-phoA reporter strain provides evidence for a role of this locus in the latter stages of pilus assembly and/or export. These constructs have provided physical markers by which we have established close physical linkage of this secretion locus to a set of genes that includes the mshA structural gene. Sequence analysis of the intervening region between these two loci has revealed the presence of an open reading frame with homology to pilus biogenesis genes of several gram-negative bacteria. This genetic organization suggests an entire operon encoding the MSHA pilus and the components necessary for its assembly and secretion to the bacterial cell surface. The nomenclature of the MSHA structural and secretory locus has been redefined accordingly

    Intestinal Colonization Dynamics of Vibrio cholerae

    Get PDF
    To cause the diarrheal disease cholera, Vibrio cholerae must effectively colonize the small intestine. In order to do so, the bacterium needs to successfully travel through the stomach and withstand the presence of agents such as bile and antimicrobial peptides in the intestinal lumen and mucus. The bacterial cells penetrate the viscous mucus layer covering the epithelium and attach and proliferate on its surface. In this review, we discuss recent developments and known aspects of the early stages of V. cholerae intestinal colonization and highlight areas that remain to be fully understood. We propose mechanisms and postulate a model that covers some of the steps that are required in order for the bacterium to efficiently colonize the human host. A deeper understanding of the colonization dynamics of V. cholerae and other intestinal pathogens will provide us with a variety of novel targets and strategies to avoid the diseases caused by these organisms

    Proteolysis of Virulence Regulator Toxr is Associated with Entry of Vibrio Cholerae Into a Dormant State

    Get PDF
    Vibrio cholerae O1 is a natural inhabitant of aquatic environments and causes the diarrheal disease, cholera. Two of its primary virulence regulators, TcpP and ToxR, are localized in the inner membrane. TcpP is encoded on the Vibrio Pathogenicity Island (VPI), a horizontally acquired mobile genetic element, and functions primarily in virulence gene regulation. TcpP has been shown to undergo regulated intramembrane proteolysis (RIP) in response to environmental conditions that are unfavorable for virulence gene expression. ToxR is encoded in the ancestral genome and is present in non-pathogenic strains of V. cholerae, indicating it has roles outside of the human host. In this study, we show that ToxR undergoes RIP in V. cholerae in response to nutrient limitation at alkaline pH, a condition that occurs during the stationary phase of growth. This process involves the site-2 protease RseP (YaeL), and is dependent upon the RpoE-mediated periplasmic stress response, as deletion mutants for the genes encoding these two proteins cannot proteolyze ToxR under nutrient limitation at alkaline pH. We determined that the loss of ToxR, genetically or by proteolysis, is associated with entry of V. cholerae into a dormant state in which the bacterium is normally found in the aquatic environment called viable but nonculturable (VBNC). Strains that can proteolyze ToxR, or do not encode it, lose culturability, experience a change in morphology associated with cells in VBNC, yet remain viable under nutrient limitation at alkaline pH. On the other hand, mutant strains that cannot proteolyze ToxR remain culturable and maintain the morphology of cells in an active state of growth. Overall, our findings provide a link between the proteolysis of a virulence regulator and the entry of a pathogen into an environmentally persistent state

    The Fatty Acid Regulator FadR Influences the Expression of the Virulence Cascade in the El Tor Biotype of Vibrio cholerae by Modulating the Levels of ToxT via Two Different Mechanisms

    Get PDF
    FadR is a master regulator of fatty acid (FA) metabolism that coordinates the pathways of FA degradation and biosynthesis in enteric bacteria. We show here that a ΔfadR mutation in the El Tor biotype of Vibrio cholerae prevents the expression of the virulence cascade by influencing both the transcription and the posttranslational regulation of the master virulence regulator ToxT. FadR is a transcriptional regulator that represses the expression of genes involved in FA degradation, activates the expression of genes involved in unsaturated FA (UFA) biosynthesis, and also activates the expression of two operons involved in saturated FA (SFA) biosynthesis. Since FadR does not bind directly to the toxT promoter, we determined whether the regulation of any of its target genes indirectly influenced ToxT. This was accomplished by individually inserting a double point mutation into the FadR-binding site in the promoter of each target gene, thereby preventing their activation or repression. Although preventing FadR-mediated activation of fabA, which encodes the enzyme that carries out the first step in UFA biosynthesis, did not significantly influence either the transcription or the translation of ToxT, it reduced its levels and prevented virulence gene expression. In the mutant strain unable to carry out FadR-mediated activation of fabA, expressing fabA ectopically restored the levels of ToxT and virulence gene expression. Taken together, the results presented here indicate that V. cholerae FadR influences the virulence cascade in the El Tor biotype by modulating the levels of ToxT via two different mechanisms

    Investigation of the Roles of Toxin-Coregulated Pili and Mannose-Sensitive Hemagglutinin Pili in the Pathogenesis of Vibrio cholerae O139 Infection

    Get PDF
    In this study, adult volunteers were fed tcpA and mshA deletion mutants of V. cholerae O139 strain CVD 112 to determine the role of toxin-coregulated pili (TCP) and mannose-sensitive hemagglutinin (MSHA) in intestinal colonization. Eight of 10 volunteers who received CVD 112 or CVD 112 ΔmshA shed the vaccine strains in their stools; the geometric mean peak excretion for both groups was 1.4 × 105 CFU/g of stool. In contrast, only one of nine recipients of CVD 112 ΔtcpA shed vibrios in his stool (P \u3c 0.01); during the first 24 h after inoculation, 3 × 102 CFU/g was recovered from this volunteer. All recipients of CVD 112 and 8 (80%) of the recipients of CVD 112 ΔmshA developed at least a fourfold rise in vibriocidal titer after immunization. In contrast, only one (11%) of the nine recipients of CVD 112 ΔtcpA developed a fourfold rise in vibriocidal titer (P \u3c 0.01). We conclude that TCP are an important colonization factor of V. cholerae O139 and probably of El Tor V. cholerae O1. In contrast, MSHA does not appear to promote intestinal colonization in humans

    Unsaturated Fatty Acid Regulation of AraC/XylS Transcription Factors

    Get PDF

    The Bile Response Repressor BreR Regulates Expression of the Vibrio cholerae breAB Efflux System Operon

    Get PDF
    Enteric pathogens have developed several resistance mechanisms to survive the antimicrobial action of bile. We investigated the transcriptional profile of Vibrio cholerae O1 El Tor strain C6706 under virulence gene-inducing conditions in the presence and absence of bile. Microarray analysis revealed that the expression of 119 genes was affected by bile. The mRNA levels of genes encoding proteins involved in transport were increased in the presence of bile, whereas the mRNA levels of genes encoding proteins involved in pathogenesis and chemotaxis were decreased. This study identified genes encoding transcriptional regulators from the TetR family (vexR and breR) and multidrug efflux pumps from the resistance-nodulation-cell division superfamily (vexB and vexD [herein renamed breB]) that were induced in response to bile. Further analysis regarding vexAB and breABexpression in the presence of various antimicrobial compounds established that vexAB was induced in the presence of bile, sodium dodecyl sulfate, or novobiocin and that the induction of breAB was specific to bile. BreR is a direct repressor of the breAB promoter and is able to regulate its own expression, as demonstrated by transcriptional and electrophoretic mobility shift assays (EMSA). The expression of breR and breAB is induced in the presence of the bile salts cholate, deoxycholate, and chenodeoxycholate, and EMSA showed that deoxycholate is able to abolish the formation of BreR-PbreR complexes. We propose that deoxycholate is able to interact with BreR and induce a conformational change that interferes with the DNA binding ability of BreR, resulting in breAB and breR expression. These results provide new insight into a transcriptional regulator and a transport system that likely play essential roles in the ability of V. cholerae to resist the action of bile in the host
    • …
    corecore