9,542 research outputs found
Entanglement entropy and differential entropy for massive flavors
In this paper we compute the holographic entanglement entropy for massive
flavors in the D3-D7 system, for arbitrary mass and various entangling region
geometries. We show that the universal terms in the entanglement entropy
exactly match those computed in the dual theory using conformal perturbation
theory. We derive holographically the universal terms in the entanglement
entropy for a CFT perturbed by a relevant operator, up to second order in the
coupling; our results are valid for any entangling region geometry. We present
a new method for computing the entanglement entropy of any top-down brane probe
system using Kaluza-Klein holography and illustrate our results with massive
flavors at finite density. Finally we discuss the differential entropy for
brane probe systems, emphasising that the differential entropy captures only
the effective lower-dimensional Einstein metric rather than the ten-dimensional
geometry.Comment: 54 pages, 8 figures; v2 references and comments adde
Entanglement entropy in top-down models
We explore holographic entanglement entropy in ten-dimensional supergravity
solutions. It has been proposed that entanglement entropy can be computed in
such top-down models using minimal surfaces which asymptotically wrap the
compact part of the geometry. We show explicitly in a wide range of examples
that the holographic entanglement entropy thus computed agrees with the
entanglement entropy computed using the Ryu-Takayanagi formula from the
lower-dimensional Einstein metric obtained from reduction over the compact
space. Our examples include not only consistent truncations but also cases in
which no consistent truncation exists and Kaluza-Klein holography is used to
identify the lower-dimensional Einstein metric. We then give a general proof,
based on the Lewkowycz-Maldacena approach, of the top-down entanglement entropy
formula.Comment: 40 page
On the evaluation of derivatives of Gaussian integrals
We show that by a suitable change of variables, the derivatives of molecular integrals over Gaussian-type functions required for analytic energy derivatives can be evaluated with significantly less computational effort than current formulations. The reduction in effort increases with the order of differentiation
General contraction of Gaussian basis sets. Part 2: Atomic natural orbitals and the calculation of atomic and molecular properties
A recently proposed scheme for using natural orbitals from atomic configuration interaction (CI) wave functions as a basis set for linear combination of atomic orbitals (LCAO) calculations is extended for the calculation of molecular properties. For one-electron properties like multipole moments, which are determined largely by the outermost regions of the molecular wave function, it is necessary to increase the flexibility of the basis in these regions. This is most easily done by uncontracting the outmost Gaussian primitives, and/or by adding diffuse primitives. A similar approach can be employed for the calculation of polarizabilities. Properties which are not dominated by the long-range part of the wave function, such as spectroscopic constants or electric field gradients at the nucleus, can generally be treated satisfactorily with the original atomic natural orbital (ANO) sets
A definitive heat of vaporization of silicon through benchmark ab initio calculations on SiF_4
In order to resolve a significant uncertainty in the heat of vaporization of
silicon -- a fundamental parameter in gas-phase thermochemistry -- [Si(g)] has been determined from a thermochemical cycle involving
the precisely known experimental heats of formation of SiF_4(g) and F(g) and a
benchmark calculation of the total atomization energy (TAE_0) of SiF_4 using
coupled-cluster methods. Basis sets up to on Si and
on F have been employed, and extrapolations for residual basis
set incompleteness applied. The contributions of inner-shell correlation (-0.08
kcal/mol), scalar relativistic effects (-1.88 kcal/mol), atomic spin-orbit
splitting (-1.97 kcal/mol), and anharmonicity in the zero-point energy (+0.04
kcal/mol) have all been explicitly accounted for. Our benchmark TAE_0=565.89
\pm 0.22 kcal/mol leads to [Si(g)]=107.15 \pm 0.38
kcal/mol ([Si(g)]=108.19 \pm 0.38 kcal/mol): between
the JANAF/CODATA value of 106.5 \pm 1.9 kcal/mol and the revised value proposed
by Grev and Schaefer [J. Chem. Phys. 97, 8389 (1992}], 108.1 \pm 0.5 kcal/mol.
The revision will be relevant for future computational studies on heats of
formation of silicon compounds.Comment: J. Phys. Chem. A, submitted Feb 1, 199
Symmetry and equivalence restrictions in electronic structure calculations
A simple method for obtaining MCSCF orbitals and CI natural orbitals adapted to degenerate point groups, with full symmetry and equivalnece restrictions, is described. Among several advantages accruing from this method are the ability to perform atomic SCF calculations on states for which the SCF energy expression cannot be written in terms of Coulomb and exchange integrals over real orbitals, and the generation of symmetry-adapted atomic natural orbitals for use in a recently proposed method for basis set contraction
The computation of C-C and N-N bond dissociation energies for singly, doubly, and triply bonded systems
The bond dissociation energies (D sub e) of C2H2, C2H4, C2H6, N2, N2H2, and N2H4 are studied at various levels of correlation treatment. The convergence of D sub e with respect to the one particle basis is studied at the single reference modified coupled-pair functional (MCPF) level. At all levels of correlation treatment, the errors in the bond dissociation energies increase with the degree of multiple bond character. The multireference configuration interaction (MRCI) D sub e values, corrected for an estimate of higher excitations, are in excellent agreement with those determined using the size extensive averaged coupled pair functional (ACPF) method. It was found that the full valence complete active space self consistent field (CASSCF)/MRCI calculations are reproduced very well by MRCI calculations based on a CASSCF calculation that includes in the active space only those electrons involved in the C-C or N-N bonds. To achieve chemical accuracy (1 kcal/mole) for the D sub e values of the doubly bonded species C2H4 and N2H2 requires one particle basis sets including up through h angular momentum functions (l = 5) and a multireference treatment of electron correlation: still higher levels of calculation are required to achieve chemical accuracy for the triply bonded species C2H2 and N2
Concerted hydrogen atom exchange between three HF molecules
We have investigated the termolecular reaction involving concerted hydrogen exchange between three HF molecules, with particular emphasis on the effects of correlation at the various stationary points along the reaction. Using an extended basis, we have located the geometries of the stable hydrogen-bonded trimer, which is of C(sub 3h) symmetry, and the transition state for hydrogen exchange, which is of D(sub 3h) symmetry. The energies of the exchange reation were then evaluated at the correlated level, using a large atomic natural orbital basis and correlating all valence electrons. Several correlation treatments were used, namely, configration interaction with single and double excitations, coupled-pair functional, and coupled-cluster methods. We are thus able to measure the effect of accounting for size-extensivity. Zero-point corrections to the correlated level energetics were determined using analytic second derivative techniques at the SCF level. Our best calculations, which include the effects of connected triple excitations in the coupled-cluster procedure, indicate that the trimer is bound by 9 +/- 1 kcal/mol relative to three separate monomers, in excellent agreement with previous estimates. The barrier to concerted hydrogen exchange is 15 kcal/mol above the trimer, or only 4.7 kcal/mol above three separated monomers. Thus the barrier to hydrogen exchange between HF molecules via this termolecular process is very low
On the electron affinities of the Ca, Sc, Ti and Y atoms
For the Ca, Sc, Ti and Y atoms calculations are performed for the ground states of the neutrals and the ground and several low-lying excited states of the negative ions. Overall the computed electron affinities are in good accord with experiment. The calculations show the rapid stabilization of the 3d orbital relative to the 4p as the nuclear charge increases. The 3F(0) and 3D(0) terms are found to be close in energy in Sc(-) and in Y(-). This confirms earlier speculation that some of the peaks in the photodetachment spectra of Y(-) originate from the bound excited 3F(0) term of Y(-)
- …