515 research outputs found

    Investigation of the field-induced ferromagnetic phase transition in spin polarized neutron matter: a lowest order constrained variational approach

    Full text link
    In this paper, the lowest order constrained variational (LOCV) method has been used to investigate the magnetic properties of spin polarized neutron matter in the presence of strong magnetic field at zero temperature employing AV18AV_{18} potential. Our results indicate that a ferromagnetic phase transition is induced by a strong magnetic field with strength greater than 1018 G10^{18}\ G, leading to a partial spin polarization of the neutron matter. It is also shown that the equation of state of neutron matter in the presence of magnetic field is stiffer than the case in absence of magnetic field.Comment: 23 pages, 9 figures Phys. Rev. C (2011) in pres

    Direct enhancement of nuclear singlet order by dynamic nuclear polarization

    No full text
    Hyperpolarized singlet order is available immediately after dissolution DNP, avoiding need for additional preparation steps. We demonstrate this procedure on a sample of [1,2–13C2]pyruvic aci

    Relativistic stars with purely toroidal magnetic fields

    Full text link
    We investigate the effects of the purely toroidal magnetic field on the equilibrium structures of the relativistic stars. The master equations for obtaining equilibrium solutions of relativistic rotating stars containing purely toroidal magnetic fields are derived for the first time. To solve these master equations numerically, we extend the Cook-Shapiro-Teukolsky scheme for calculating relativistic rotating stars containing no magnetic field to incorporate the effects of the purely toroidal magnetic fields. By using the numerical scheme, we then calculate a large number of the equilibrium configurations for a particular distribution of the magnetic field in order to explore the equilibrium properties. We also construct the equilibrium sequences of the constant baryon mass and/or the constant magnetic flux, which model the evolution of an isolated neutron star as it loses angular momentum via the gravitational waves. Important properties of the equilibrium configurations of the magnetized stars obtained in this study are summarized as follows ; (1) For the non-rotating stars, the matter distribution of the stars is prolately distorted due to the toroidal magnetic fields. (2) For the rapidly rotating stars, the shape of the stellar surface becomes oblate because of the centrifugal force. But, the matter distribution deep inside the star is sufficiently prolate for the mean matter distribution of the star to be prolate. (3) The stronger toroidal magnetic fields lead to the mass-shedding of the stars at the lower angular velocity. (4) For some equilibrium sequences of the constant baryon mass and magnetic flux, the stars can spin up as they lose angular momentum.Comment: 13 figures, 7 tables, submitted to PR

    The Origin of Solar Activity in the Tachocline

    Full text link
    Solar active regions, produced by the emergence of tubes of strong magnetic field in the photosphere, are restricted to within 35 degrees of the solar equator. The nature of the dynamo processes that create and renew these fields, and are therefore responsible for solar magnetic phenomena, are not well understood. We analyze the magneto-rotational stability of the solar tachocline for general field geometry. This thin region of strong radial and latitudinal differential rotation, between the radiative and convective zones, is unstable at latitudes above 37 degrees, yet is stable closer to the equator. We propose that small-scale magneto-rotational turbulence prevents coherent magnetic dynamo action in the tachocline except in the vicinity of the equator, thus explaining the latitudinal restriction of active regions. Tying the magnetic dynamo to the tachocline elucidates the physical conditions and processes relevant to solar magnetism.Comment: 10 pages, 1 figure, accepted for publication in ApJ

    Bounds on the Magnetic Fields in the Radiative Zone of the Sun

    Get PDF
    We discuss bounds on the strength of the magnetic fields that could be buried in the radiative zone of the Sun. The field profiles and decay times are computed for all axisymmetric toroidal Ohmic decay eigenmodes with lifetimes exceeding the age of the Sun. The measurements of the solar oblateness yield a bound <~ 7 MG on the strength of the field. A comparable bound is expected to come from the analysis of the splitting of the solar oscillation frequencies. The theoretical analysis of the double diffusive instability also yields a similar bound. The oblateness measurements at their present level of sensitivity are therefore not expected to measure a toroidal field contribution.Comment: 15 pages, 6 figure

    Sexual violence in post-conflict Liberia: survivors and their care.

    Get PDF
    Using routine data from three clinics offering care to survivors of sexual violence (SV) in Monrovia, Liberia, we describe the characteristics of SV survivors and the pattern of SV and discuss how the current approach could be better adapted to meet survivors' needs. There were 1500 survivors seeking SV care between January 2008 and December 2009. Most survivors were women (98%) and median age was 13 years (Interquartile range: 9-17 years). Sexual aggression occurred during day-to-day activities in 822 (55%) cases and in the survivor's home in 552 (37%) cases. The perpetrator was a known civilian in 1037 (69%) SV events. Only 619 (41%) survivors sought care within 72 h. The current approach could be improved by: effectively addressing the psychosocial needs of child survivors, reaching male survivors, targeting the perpetrators in awareness and advocacy campaigns and reducing delays in seeking care

    On a mechanism for enhancing magnetic activity in tidally interacting binaries

    Get PDF
    We suggest a mechanism for enhancing magnetic activity in tidally interacting binaries. We suppose that the deviation of the primary star from spherical symmetry due to the tidal influence of the companion leads to stellar pulsation in its fundamental mode. It is shown that stellar radial pulsation amplifies torsional Alfv{\'e}n waves in a dipole-like magnetic field, buried in the interior, according to the recently proposed swing wave-wave interaction (Zaqarashvili 2001). Then amplified Alfv{\'e}n waves lead to the onset of large-scale torsional oscillations, and magnetic flux tubes arising towards the surface owing to magnetic buoyancy diffuse into the atmosphere producing enhanced chromospheric and coronal emission.Comment: Accepted in Ap

    Nonaxisymmetric Magnetorotational Instability in Proto-Neutron Stars

    Full text link
    We investigate the stability of differentially rotating proto-neutron stars (PNSs) with a toroidal magnetic field. Stability criteria for nonaxisymmetric MHD instabilities are derived using a local linear analysis. PNSs are expected to have much stronger radial shear in the rotation velocity compared to normal stars. We find that nonaxisymmetric magnetorotational instability (NMRI) with a large azimuthal wavenumber mm is dominant over the kink mode (m=1m=1) in differentially rotating PNSs. The growth rate of the NMRI is of the order of the angular velocity Ω\Omega which is faster than that of the kink-type instability by several orders of magnitude. The stability criteria are analogous to those of the axisymmetric magnetorotational instability with a poloidal field, although the effects of leptonic gradients are considered in our analysis. The NMRI can grow even in convectively stable layers if the wavevectors of unstable modes are parallel to the restoring force by the Brunt-V\"ais\"al\"a oscillation. The nonlinear evolution of NMRI could amplify the magnetic fields and drive MHD turbulence in PNSs, which may lead to enhancement of the neutrino luminosity.Comment: 24pages, 7figures, Accepted for publication in the Astrophysical Journal (December 12, 2005

    Turbulent Mixing in the Surface Layers of Accreting Neutron Stars

    Full text link
    During accretion a neutron star (NS) is spun up as angular momentum is transported through its surface layers. We study the resulting differentially rotating profile, focusing on the impact this has for type I X-ray bursts. The predominant viscosity is likely provided by the Tayler-Spruit dynamo. The radial and azimuthal magnetic field components have strengths of ~10^5 G and ~10^10 G, respectively. This leads to nearly uniform rotation at the depths of interest for X-ray bursts. A remaining small shear transmits the accreted angular momentum inward to the NS interior. Though this shear gives little viscous heating, it can trigger turbulent mixing. Detailed simulations will be required to fully understand the consequences of mixing, but our models illustrate some general features. Mixing has the greatest impact when the buoyancy at the compositional discontinuity between accreted matter and ashes is overcome. This occurs at high accretion rates, at low spin frequencies, or may depend on the ashes from the previous burst. We then find two new regimes of burning. The first is ignition in a layer containing a mixture of heavier elements from the ashes. If ignition occurs at the base of the mixed layer, recurrence times as short as ~5-30 minutes are possible. This may explain the short recurrence time of some bursts, but incomplete burning is still needed to explain these bursts' energetics. When mixing is sufficiently strong, a second regime is found where accreted helium mixes deep enough to burn stably, quenching X-ray bursts. We speculate that the observed change in X-ray burst properties near one-tenth the Eddington accretion rate is from this mechanism. The carbon-rich material produced by stable helium burning would be important for triggering and fueling superbursts. (abridged)Comment: Accepted for publication in The Astrophysical Journal, 16 pages, 15 figure
    • …
    corecore