644 research outputs found

    Quasi-TEM modes in rectangular waveguides: a study based on the properties of PMC and hard surfaces

    Full text link
    Hard surfaces or magnetic surfaces can be used to propagate quasi-TEM modes inside closed waveguides. The interesting feature of these modes is an almost uniform field distribution inside the waveguide. But the mechanisms governing how these surfaces act, how they can be characterized, and further how the modes propagate are not detailed in the literature. In this paper, we try to answer these questions. We give some basic rules that govern the propagation of the quasi-TEM modes, and show that many of their characteristics (i.e. their dispersion curves) can be deduced from the simple analysis of the reflection properties of the involved surfaces

    Design of metallic nanoparticles gratings for filtering properties in the visible spectrum

    Full text link
    Plasmonic resonances in metallic nanoparticles are exploited to create efficient optical filtering functions. A Finite Element Method is used to model metallic nanoparticles gratings. The accuracy of this method is shown by comparing numerical results with measurements on a two-dimensional grating of gold nanocylinders with elliptic cross section. Then a parametric analysis is performed in order to design efficient filters with polarization dependent properties together with high transparency over the visible range. The behavior of nanoparticle gratings is also modelled using the Maxwell-Garnett homogenization theory and analyzed by comparison with the diffraction by a single nanoparticle. The proposed structures are intended to be included in optical systems which could find innovative applications.Comment: submitted to Applied Optic

    Surface coupling effects on the capacitance of thin insulating films

    Get PDF
    A general form for the surface roughness effects on the capacitance of a capacitor is proposed. We state that a capacitor with two uncoupled rough surfaces could be treated as two capacitors in series which have been divided from the mother capacitor by a slit. This is in contrast to the case where the two rough surfaces are coupled. When the rough surfaces are coupled, the type of coupling decides the modification of the capacitance in comparison to the uncoupled case. It is shown that if the coupling between the two surfaces of the capacitor is positive (negative), the capacitance is less (higher) than the case of two uncoupled rough plates. Also, we state that when the correlation length and the roughness exponent are small, the coupling effect is not negligible

    A modal model for diffraction gratings

    Full text link
    A description of an algorithm for a rather general modal grating calculation is presented. Arbitrary profiles, depth, and permittivity are allowed. Gratings built up from sub-gratings are allowed, as are coatings on the sidewalls of lines, and arbitrary complex structure. Conical angles and good conductors are supported

    Dynamic effective anisotropy: Asymptotics, simulations, and microwave experiments with dielectric fibers

    Get PDF
    International audienceWe investigate dynamic effective anisotropy in photonic crystals (PCs) through a combination of an effective medium theory, which is a high-frequency homogenization (HFH) method explicitly developed to operate for short waves, as well as through numerical simulations and microwave experiments. The HFH yields accurate predictions of the effective anisotropic properties of periodic structures when the wavelength is of comparable order to the pitch of the array; specifically, we investigate a square array of pitch 2 cm consisting of dielectric rods of radius 0.5 cm and refractive index n=6√ within an air matrix. This behaves as an effective medium, with strong artificial anisotropy, at a frequency corresponding to a flat band emerging from a Dirac-like point in transverse magnetic (TM) polarization. At this frequency, highly directive emission is predicted for an electric source placed inside this PC, and this artificial anisotropy can be shown to coincide with a change of character of the underlying effective equation from isotropic to unidirective, with coefficients of markedly different magnitudes appearing in the effective equation tensor. In transverse electric (TE) polarization, we note a second radical change of character of the underlying effective equation, this time from elliptic to hyperbolic, near a frequency at which a saddle point occurs in the corresponding dispersion curves. Delicate microwave experiments are performed in both polarizations for such a PC consisting of 80 rods, and we demonstrate that a directive emission in the form of a + (respectively, an X) is indeed seen experimentally at the predicted frequency 9.5 GHz in TM polarization (respectively, 5.9 GHz in TE polarization). These are clearly dynamic effects since in the quasistatic regime the PC just behaves as an isotropic medium
    • …
    corecore