234 research outputs found
Tree analysis code /TRACE/ program E64106. NERVA program
Computer program for Monte Carlo simulation of fault trees in analysis of large complex system
High magnetic field phase diagram of PrOs4Sb12
The magnetic phase diagram of PrOsSb has been investigated by
specific heat measurements between 8 and 32 T. A new Schottky anomaly due to
excitations between two lowest crystalline-electric-field (CEF) singlets, has
been found for both and above the field
where the field-induced ordered phase (FIOP) is suppressed. The constructed
phase diagram shows weak magnetic anisotropy and implies a crossing of
the two CEF levels at about 8 - 9 T for both field directions. These results
provide an unambiguous evidence for the singlet being the CEF ground
state and suggest the level crossing (involving lowest CEF levels) as the
driving mechanism of FIOP.Comment: Submitted to Phys. Rev. Let
Theoretical Description of Nearly Discontinuous Transition in Superconductors with Paramagnetic Depairing
Based on a theoretical argument and Monte Carlo simulations of a
Ginzburg-Landau model derived microscopically, it is argued that, in type-II
superconductors where {\it both} the paramagnetic {\it and} orbital depairings
are important, a strong first-order transition (FOT) at expected in
the mean field (MF) approximation never occurs in real systems and changes due
to the fluctuation into a crossover. The present result explains why a {\it
nearly} discontinuous crossover at with {\it no} intrinsic hysteresis
is observed only in a clean superconducting material with a singlet pairing and
a high condensation energy such as CeCoIn.Comment: Publication version. See cond-mat/0306060 regarding a corresponding
long pape
Microscopic Mechanism for Staggered Scalar Order in PrFe4P12
A microscopic model is proposed for the scalar order in PrFe4P12 where f2
crystalline electric field (CEF) singlet and triplet states interact with two
conduction bands. By combining the dynamical mean-field theory and the
continuous-time quantum Monte Carlo, we obtain an electronic order with
staggered Kondo and CEF singlets with the total conduction number being unity
per site. The ground state becomes semimetallic provided that the two
conduction bands have different occupation numbers. This model naturally
explains experimentally observed properties in the ordered phase of PrFe4P12
such as the scalar order parameter, temperature dependence of the resistivity,
field-induced staggered moment, and inelastic features in neutron scattering.
The Kondo effect plays an essential role for ordering, in strong contrast with
ordinary magnetic orders by the RKKY interaction.Comment: 4 pages, 4figure
Exciton Mediated Triplet Superconductivity in Th System PrOs4Sb12
In PrOs4Sb12, the lowest-lying singlet and triplet states in a Pr 4f^2
configuration hybridize with conduction electrons having local a_u and t_u
point-group symmetries. It is shown that for an attractive triplet pairing
interaction, the orbital degrees of freedom of the t_u component are important.
In addition, the Th point-group symmetry characteristic of skutterudites plays
an important role in stabilizing triplet superconductivity.Comment: 4 pages, 2 figure
On the origin of multiple ordered phases in PrFe4P12
The nature of multiple electronic orders in skutterudite PrFe_4P_{12} is
discussed on the basis of a model with antiferro-quadrupole (AFQ) interaction
of \Gamma_3 symmetry. The high-field phase can be reproduced qualitatively
provided (i) ferro-type interactions are introduced between the dipoles as well
as between the octupoles of localized f-electrons, and (ii) separation is
vanishingly small between the \Gamma_1-\Gamma_4^{(1)} crystalline electric
field (CEF) levels. The high-field phase can have either the same ordering
vector q=(1,0,0) as in the low-field phase, or a different one q=0 depending on
the parameters. In the latter case, distortion of the crystal perpendicular to
the (111) axis is predicted. The corresponding anomaly in elastic constants
should also appear. The electrical resistivity is calculated with account of
scattering within the CEF quasi-quartet. It is found that the resistivity as a
function of the direction of magnetic field shows a sharp maximum around the
(111) axis at low temperatures because of the level crossing.Comment: 16 pages, 5 figure
Phenomenological theory of a scalar electronic order: application to skutterudite PrFe4P12
By phenomenological Landau analysis, it is shown that a scalar order
parameter with the point-group symmetry explains most properties
associated with the phase transition in PrFeP at 6.5 K. The
scalar-order model reproduces magnetic and elastic properties in
PrFeP consistently such as (i) the anomaly of the magnetic
susceptibility and elastic constant at the transition temperature, (ii)
anisotropy of the magnetic susceptibility in the presence of uniaxial pressure,
and (iii) the anomaly in the elastic constant in magnetic field. An Ehrenfest
relation is derived which relates the anomaly of the magnetic susceptibility to
that of the elastic constant at the transition.Comment: 16 pages, 9 figure
Novel features in the flux-flow resistivity of the heavy fermion superconductor PrOsSb
We have investigated the electrical resistivity of the heavy fermion
superconductor PrOsSb in the mixed state. We found unusual double
minima in the flux-flow resistivity as a function of magnetic field below the
upper critical field for the first time, indicating double peaks in the pinning
force density (). Estimated at the peak exhibits
apparent dependence on applied field direction; composed of two-fold and
four-fold symmetries mimicking the reported angular dependence of thermal
conductivity (). The result is discussed in correlation with the double
step superconducting (SC) transition in the specific heat and the multiple
SC-phases inferred from the angular dependence of .Comment: 5 pages, 7 figures, to appear in J. Phys. Soc. Jpn. Vol. 74, No. 6 or
Spin-Dependent Mass Enhancement under Magnetic Field in the Periodic Anderson Model
In order to study the mechanism of the mass enhancement in heavy fermion
compounds in the presence of magnetic field, we study the periodic Anderson
model using the fluctuation exchange approximation. The resulting value of the
mass enhancement factor z^{-1} can become up to 10, which is significantly
larger than that in the single-band Hubbard model. We show that the difference
between the magnitude of the mass enhancement factor of up spin (minority spin)
electrons z^{-1}_up and that of down spin (majority spin) electrons z^{-1}_down
increases by the applied magnetic field B//z, which is consistent with de
Haas-van Alphen measurements for CeCoIn_5, CeRu_2Si_2 and CePd_2Si_2. We
predict that z^{-1}_up >z^{-1}_down in many Ce compounds, whereas z^{-1}_up <
z^{-1}_down in Yb compounds.Comment: 5 pages, 4 figure
- …