238 research outputs found

    Tuning Heavy Fermion Systems into Quantum Criticality by Magnetic Field

    Full text link
    We discuss a series of thermodynamic, magnetic and electrical transport experiments on the two heavy fermion compounds CeNi2Ge2 and YbRh2Si2 in which magnetic fields, B, are used to tune the systems from a Non-Fermi liquid (NFL) into a field-induced FL state. Upon approaching the quantum-critical points from the FL side by reducing B we analyze the heavy quasiparticle (QP) mass and QP-QP scattering cross sections. For CeNi2Ge2 the observed behavior agrees well with the predictions of the spin-density wave (SDW) scenario for three-dimensional (3D) critical spin-fluctuations. By contrast, the observed singularity in YbRh2Si2 cannot be explained by the itinerant SDW theory for neither 3D nor 2D critical spinfluctuations. Furthermore, we investigate the magnetization M(B) at high magnetic fields. For CeNi2Ge2 a metamagnetic transition is observed at 43 T, whereas for YbRh2Si2 a kink-like anomaly occurs at 10 T in M vs B (applied along the easy basal plane) above which the heavy fermion state is completely suppressed.Comment: 15 pages, 8 figures, submitted to Journal of Low Temperature Physics, special Series on "High Magnetic Field Facilities

    Anisotropic low field behavior and the observation of flux jumps in CeCoIn5

    Full text link
    The magnetic behavior of the heavy fermion superconductor CeCoIn5 has been investigated. The low field magnetization data show flux jumps in the mixed state of the superconducting phase in a restricted range of temperature. These flux jumps begin to disappear below 1.7 K, and are completely absent at 1.5 K. The magnetization loops are asymmetric, suggesting that surface and geometrical factors dominate the pinning in this system. The lower critical field (Hc1), obtained from the magnetization data, shows a linear temperature dependence and is anisotropic. The calculated penetration depth is also anisotropic, which is consistent with the observation of an anisotropic superconducting gap in CeCoIn5. The critical currents, determined from the high field isothermal magnetization loops, are comparatively low (around 4000 A/cm2 at 1.6 K and 5 kOe).Comment: 4 pages 3 figure

    High magnetic field phase diagram of PrOs4Sb12

    Full text link
    The magnetic phase diagram of PrOs4_4Sb12_{12} has been investigated by specific heat measurements between 8 and 32 T. A new Schottky anomaly due to excitations between two lowest crystalline-electric-field (CEF) singlets, has been found for both H∥(100)H \parallel (100) and H∥(110)H \parallel (110) above the field where the field-induced ordered phase (FIOP) is suppressed. The constructed H−TH-T phase diagram shows weak magnetic anisotropy and implies a crossing of the two CEF levels at about 8 - 9 T for both field directions. These results provide an unambiguous evidence for the Γ1\Gamma_1 singlet being the CEF ground state and suggest the level crossing (involving lowest CEF levels) as the driving mechanism of FIOP.Comment: Submitted to Phys. Rev. Let

    Field-induced quantum critical point in CeCoIn_5

    Full text link
    The resistivity of CeCoIn_5 was measured down to 20 mK in magnetic fields of up to 16 T. With increasing field, we observe a suppression of the non-Fermi liquid behavior, rho~T, and the development of a Fermi liquid state, with its characteristic rho=rho_0+AT^2 dependence. The field dependence of the T^2 coefficient shows critical behavior with an exponent of ~4/3. This is evidence for a new field-induced quantum critical point, occuring in this case at a critical field which coincides with the superconducting upper critical field H_c2.Comment: 2 pages, 2 figures, submitted to M2S-Rio 2003 Proceeding

    Pressure Evolution of the Magnetic Field induced Ferromagnetic Fluctuation through the Pseudo-Metamagnetism of CeRu2Si2

    Full text link
    Resistivity measurements performed under pressure in the paramagnetic ground state of CeRu2Si2 are reported. They demonstrate that the relative change of effective mass through the pseudo metamagnetic transition is invariant under pressure. The results are compared with the first order metamagnetic transition due to the antiferromagnetism of Ce0.9La0.1Ru2Si2 which corresponds to the "negative" pressure of CeRu2Si2 by volume expansion. Finally, we describe the link between the spin-depairing of quasiparticles on CeRu2Si2 and that of Cooper pairs on the unconventional heavy fermion superconductor CeCoIn5.Comment: 5 pages, 6 figures, accepted for publication in J. Phys. Soc. Jp

    Non-Collinear Magnetism due to Orbital Degeneracy and Multipolar Interactions

    Full text link
    The origin of non-collinear magnetism under quadrupolar ordering is investigated with CeB6 taken as a target system. The mode-mixing effect among 15 multipoles is analyzed based on the Ginzburg-Landau free energy. Then the lower magnetic transition temperature and the order parameters are derived within the mean-field approximation. In the presence of pseudo-dipole-type interactions for the next-nearest neighbors, the observed pattern of non-collinear ordering is indeed stabilized for certain set of interaction parameters. The stability of the phase III' in the magnetic field is also explained, which points to the importance of the next-nearest-neighbor octupole-octupole interaction. Concerning the phase IV in CexLa1-xB6 with x ~ 0.75, a possibility of pure octupole ordering is discussed based on slight modifications of the strength of interactions.Comment: 12 pages, 7 figures, 3 tables, to appear in J. Phys. Soc. Jpn. 70 (6) (2001

    Novel features in the flux-flow resistivity of the heavy fermion superconductor PrOs4_{4}Sb12_{12}

    Full text link
    We have investigated the electrical resistivity of the heavy fermion superconductor PrOs4_{4}Sb12_{12} in the mixed state. We found unusual double minima in the flux-flow resistivity as a function of magnetic field below the upper critical field for the first time, indicating double peaks in the pinning force density (FPF_{\rm P}). Estimated FPF_{\rm P} at the peak exhibits apparent dependence on applied field direction; composed of two-fold and four-fold symmetries mimicking the reported angular dependence of thermal conductivity (κ\kappa). The result is discussed in correlation with the double step superconducting (SC) transition in the specific heat and the multiple SC-phases inferred from the angular dependence of κ\kappa.Comment: 5 pages, 7 figures, to appear in J. Phys. Soc. Jpn. Vol. 74, No. 6 or

    Spin-Dependent Mass Enhancement under Magnetic Field in the Periodic Anderson Model

    Full text link
    In order to study the mechanism of the mass enhancement in heavy fermion compounds in the presence of magnetic field, we study the periodic Anderson model using the fluctuation exchange approximation. The resulting value of the mass enhancement factor z^{-1} can become up to 10, which is significantly larger than that in the single-band Hubbard model. We show that the difference between the magnitude of the mass enhancement factor of up spin (minority spin) electrons z^{-1}_up and that of down spin (majority spin) electrons z^{-1}_down increases by the applied magnetic field B//z, which is consistent with de Haas-van Alphen measurements for CeCoIn_5, CeRu_2Si_2 and CePd_2Si_2. We predict that z^{-1}_up >z^{-1}_down in many Ce compounds, whereas z^{-1}_up < z^{-1}_down in Yb compounds.Comment: 5 pages, 4 figure
    • …
    corecore