169 research outputs found

    A New bis(rhodamine)-Based Fluorescent Chemosensor for Fe3+

    Get PDF
    A new bis(rhodamine)-based fluorescent probe 4 was synthesized, and it exhibited high selectivity for Fe3+ over other commonly coexistent metal ions in both 50% ethanol and Tris–HCl buffer. Upon the addition of Fe3+, the spirocyclic ring of 4 was opened and a significant enhancement of visible color and fluorescence in the range of 500–600 nm was observed

    Calculating Ensemble Averaged Descriptions of Protein Rigidity without Sampling

    Get PDF
    Previous works have demonstrated that protein rigidity is related to thermodynamic stability, especially under conditions that favor formation of native structure. Mechanical network rigidity properties of a single conformation are efficiently calculated using the integer body-bar Pebble Game (PG) algorithm. However, thermodynamic properties require averaging over many samples from the ensemble of accessible conformations to accurately account for fluctuations in network topology. We have developed a mean field Virtual Pebble Game (VPG) that represents the ensemble of networks by a single effective network. That is, all possible number of distance constraints (or bars) that can form between a pair of rigid bodies is replaced by the average number. The resulting effective network is viewed as having weighted edges, where the weight of an edge quantifies its capacity to absorb degrees of freedom. The VPG is interpreted as a flow problem on this effective network, which eliminates the need to sample. Across a nonredundant dataset of 272 protein structures, we apply the VPG to proteins for the first time. Our results show numerically and visually that the rigidity characterizations of the VPG accurately reflect the ensemble averaged properties. This result positions the VPG as an efficient alternative to understand the mechanical role that chemical interactions play in maintaining protein stability

    Asian Pacific Society of Cardiology Consensus Recommendations on the Use of MitraClip for Mitral Regurgitation

    Get PDF
    Transcatheter mitral valve repair with the MitraClip, a catheter-based percutaneous edge-to-edge repair technique to correct mitral regurgitation (MR), has been demonstrated in Western studies to be an effective and safe MR treatment strategy. However, randomised clinical trial data on its use in Asian-Pacific patients is limited. Hence, the Asian Pacific Society of Cardiology convened an expert panel to review the available literature on MitraClip and to develop consensus recommendations to guide clinicians in the region. The panel developed statements on the use of MitraClip for the management of degenerative MR, functional MR, and other less common indications, such as acute MR, dynamic MR, hypertrophic obstructive cardiomyopathy, and MR after failed surgical repair. Each statement was voted on by each panel member and consensus was reached when 80% of experts voted ‘agree’ or ‘neutral’. This consensus-building process resulted in 10 consensus recommendations to guide general cardiologists in the evaluation and management of patients in whom MitraClip treatment is being contemplated

    Systems biology discoveries using non-human primate pluripotent stem and germ cells: novel gene and genomic imprinting interactions as well as unique expression patterns

    Get PDF
    The study of pluripotent stem cells has generated much interest in both biology and medicine. Understanding the fundamentals of biological decisions, including what permits a cell to maintain pluripotency, that is, its ability to self-renew and thereby remain immortal, or to differentiate into multiple types of cells, is of profound importance. For clinical applications, pluripotent cells, including both embryonic stem cells and adult stem cells, have been proposed for cell replacement therapy for a number of human diseases and disorders, including Alzheimer's, Parkinson's, spinal cord injury and diabetes. One challenge in their usage for such therapies is understanding the mechanisms that allow the maintenance of pluripotency and controlling the specific differentiation into required functional target cells. Because of regulatory restrictions and biological feasibilities, there are many crucial investigations that are just impossible to perform using pluripotent stem cells (PSCs) from humans (for example, direct comparisons among panels of inbred embryonic stem cells from prime embryos obtained from pedigreed and fertile donors; genomic analysis of parent versus progeny PSCs and their identical differentiated tissues; intraspecific chimera analyses for pluripotency testing; and so on). However, PSCs from nonhuman primates are being investigated to bridge these knowledge gaps between discoveries in mice and vital information necessary for appropriate clinical evaluations. In this review, we consider the mRNAs and novel genes with unique expression and imprinting patterns that were discovered using systems biology approaches with primate pluripotent stem and germ cells
    • 

    corecore