8 research outputs found

    Linearly Polarized Modes of a Corrugated Metallic Waveguide

    Get PDF
    A linearly polarized (LP[subscript mn]) mode basis set for oversized, corrugated, metallic waveguides is derived for the special case of quarter-wavelength-depth circumferential corrugations. The relationship between the LPmn modes and the conventional modes (HEmn, EHmn, TE0n, TM0n) of the corrugated guide is shown. The loss in a gap or equivalent miter bend in the waveguide is calculated for single-mode and multimode propagation on the line. In the latter case, it is shown that modes of the same symmetry interfere with one another, causing enhanced or reduced loss, depending on the relative phase of the modes. If two modes with azimuthal (m) indexes that differ by one propagate in the waveguide, the resultant centroid and the tilt angle of radiation at the guide end are shown to be related through a constant of the motion. These results describe the propagation of high-power linearly polarized radiation in overmoded corrugated waveguides.United States. Dept. of Energy (Office of Fusion Energy Sciences)United States. Dept. of Energy (Virtual Laboratory for Technology)United States. Dept. of Energy (Office of Science, US ITER Project

    Low-Power Testing of Losses in Millimeter-Wave Transmission Lines for High-Power Applications

    Get PDF
    We report the measurement of small losses in transmission line (TL) components intended for high-power millimeter-wave applications. Measurements were made using two different low-power techniques: a coherent technique using a vector network analyzer (VNA) and an incoherent technique using a radiometer. The measured loss in a 140 GHz 12.7 mm diameter TL system, consisting of 1.7 m of circular corrugated waveguide and three miter bends, is dominated by the miter bend loss. The measured loss was 0.3±0.1 dB per miter bend using a VNA; and 0.22±0.1 dB per miter bend using a radiometer. Good agreement between the two measurement techniques implies that both are useful for measuring small losses. To verify the methodology, the VNA technique was employed to measure the extremely small transmission loss in a 170 GHz ITER prototype TL system consisting of three lengths of 1 m, 63.5 mm diameter, circular corrugated waveguide and two miter bends. The measured loss of 0.05±0.02 dB per miter bend may be compared with the theoretical loss of 0.027 dB per miter bend. These results suggest that low-power testing of TL losses, utilizing a small, simple TL system and a VNA, is a reliable method for evaluating performance of low-loss millimeter-wave TL components intended for use in high-power applications

    Hands, tools, weapons

    No full text
    corecore