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Abstract—High power, high frequency microwave radiation
can be transmitted with very low loss in oversized corrugated
metallic waveguide. We derive a linearly polarized (LPmn) mode
basis set for these waveguides for the special case of quarter
wavelength depth corrugations. We also show the relationship
between the LPmn modes and the conventional modes (HEmn,
EHmn, TE0n, TM0n) of the corrugated guide. The loss in a gap
or equivalent miter bend in the waveguide is calculated for single
mode and multi-mode propagation on the line. In the latter case,
it is shown that modes of the same symmetry interfere with
one another, causing enhanced or reduced loss, depending on
the relative phase of the modes. If two modes with azimuthal
(m) indeces that differ by one propagate in the waveguide, the
resultant centroid and the tilt angle of radiation at the guide
end are shown to be related through a constant of the motion.
These results should be useful in describing the propagation
of high power, linearly polarized radiation in these overmoded,
corrugated waveguides.

I. INTRODUCTION

An important problem in research with high power, high
frequency coherent microwave radiation is the transmission
of the radiation from the source to the application. In recent
years, rapid advances in the development of gyrotrons have
made available sources of continuous power at levels in the
megawatt range at frequencies of up to 170 GHz. The radiation
from gyrotrons is often transported long distances, many tens
of meters, before being launched for plasma heating. The
transmission lines ordinarily used in these applications are
over-sized corrugated metallic waveguides. These waveguides
provide low loss and low mode conversion. The metallic wall
helps to prevent accidental loss of radiation. Other major uses
of these corrugated waveguides include transmission lines for
plasma diagnostics, radar, materials heating and spectroscopy.

The theory for modes of corrugated metallic waveguides
has been previously developed [1], [2], [3], [4]. The original
application of corrugated waveguides was in the development
of horn antennas, but recent applications of straight corrugated
waveguide have led to a large literature devoted to that specific
topic. A set of eigenmodes has been derived for corrugated
metallic waveguide, consisting of hybrid modes, both HE mn

and EHmn modes, plus the TE0n and TM0n modes [5], [6],
[7]. The fundamental mode of corrugated waveguide, the HE 11

mode is linearly polarized. However, the hybrid modes are,
in general, not linearly polarized. The purpose of this paper
is to develop a set of linearly polarized eigenmodes (LPmn)
for corrugated metallic waveguide. Since gyrotron beams are

linearly polarized, the LPmn mode set has advantages for
describing this radiation. We also develop a number of useful
results for the propagation of LPmn modes in corrugated
metallic waveguide.

The corrugated waveguides consist of hollow metallic cylin-
ders where the inner wall has periodic wavelength-scaled
grooves, as depicted in Figure 1. Figure 1 also shows the
parameters of the waveguide and the coordinates used in
describing the modes. The fundamental mode of the corrugated
waveguide, the HE11 mode, has less attenuation than the
fundamental modes for equivalent smooth-wall cylindrical and
rectangular waveguides. This effect is reviewed for frequencies
from 1-10 GHz in [1] and for the 100 GHz range in [3]. Over-
moded corrugated waveguides have extremely low losses at
high frequencies, even for higher order modes [8], [9]. The
attenuation for a corrugated guide scales inversely with the
cube of the radius to wavelength ratio, a/λ. The loss in straight
waveguide sections is so low that we will omit discussion of
that loss in this paper; the loss is discussed at length in [5].
However, if the guide size (a/λ) is too large for the application
at hand, power will be lost due to misalignment and fabrication
errors.

The results obtained in this paper will be specialized to the
case of a quarter-wavelength groove depth, d = λ/4, which is
the optimum depth for the lowest attenuation in the waveguide.
We will also specialize our analysis to waveguides with large
values of a/λ. An important application that is currently
under development is the transmission line for the Electron
Cyclotron Heating system for the ITER tokamak, which will
have twenty-four one megawatt gyrotrons at 170 GHz. Each
gyrotron will have a transmission line that is over one hundred
meters long [10]. These transmission lines have been designed
with a corrugation depth, d = λ/4, of 0.44 mm and a radius
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Fig. 1. (a) A cylindrical corrugated waveguide with a radius of a. The
corrugations are defined by w1, w2, and d. For low loss characteristics the
corrugation depth is d = λ/4. (b) An illustration of the variables in the
cylindrical geometry.
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of a =31.75 mm, such that a/λ =18 [11]. In this paper, we
will use this case for illustrating some important examples.

Over-moded corrugated waveguides ideally operate only in
the fundamental HE11 mode, but higher order modes (HOMs)
also propagate along the line with low losses. For many high
power, high frequency experiments, such as ITER, gyrotrons
are used to produce Gaussian (TEM00) beam inputs for the
transmission line system. Ideally, the Gaussian beam couples
to and propagates as the fundamental HE11 mode in the
transmission line, with 98% theoretical coupling [12]. How-
ever, experimentally realistic gyrotron inputs are imperfect
Gaussian beams and can be injected into the transmission line
system with tilt and/or offset, causing the excitation of HOMs
on the over-moded transmission line [13]. These HOMs are
supported in the line and will propagate with small attenuation.
Interference effects caused by HOMs, that is, by the presence
of more than one mode on the transmission line, are considered
in this paper.

In Section II of this paper, we derive the set of LPmn modes
of a circular, corrugated, metallic waveguide with quarter wave
corrugations. The derivation is complete, but it is shortened
by taking advantage of prior work in deriving the hybrid
modes. In Section III, we show the relationship of the set
of LPmn modes to the usual hybrid mode set. Since each
set of modes can form a basis set, they must be related. The
results are illustrated by the construction of the lowest order
LPmn modes, including the LP11 and the LP21 modes, from
the hybrid modes. In Section IV, we derive the loss in power
of a single LPmn mode propagating through a gap in the
waveguide. The result is also analogous to the loss due to a
miter bend, a common transmission line component. In Section
V, we discuss the gap loss for a mixture of LPmn modes. For
modes of the same azimuthal symmetry, the relative phase of
the modes is found to play a major role in the gap loss. In
Section VI, we consider two modes propagating together on
the transmission line which is terminated. In this case, we
find that modes of different symmetry interfere at the end
of the waveguide, causing the centroid of power to be offset
and/or the fields to radiate with a tilt angle. A constant of the
motion involving the tilt and offset is derived. Section VII is
a discussion.

The results derived in this paper should be useful in plan-
ning corrugated waveguide transmission lines for high power
microwave systems and in analyzing the properties of the
waveguides.

II. DESCRIPTION OF LPmn MODES

In this section, we show that linearly polarized, LPmn,
modes form a basis set for metallic corrugated waveguides
with corrugations of depth, d = λ/4. These modes are
particularly convenient for use in treating the transmission of
high power radiation from gyrotrons since gyrotrons produce
linearly polarized microwave beams. We also will show the
relationship of the LPmn mode basis set to the conventional
hybrid mode basis set of HE, EH, TE, and TM modes [5], [6],
[7], [14], [15], [16]. The fields of the hybrid modes in over-
moded corrugated circular waveguides are defined readily in

the literature in cylindrical coordinates [5], [13]. Though the
hybrid modes create a basis set, a discrepancy can easily arise
between the polarization of the beam and the defined modes
of the beam if the modes are matched while considering only
field intensity and not field polarization. The use of LP modes
reduces the possibility of polarization discrepancy for common
applications that use a linearly polarized gyrotron input. Since
LP modes form a basis set, they may also be used to construct
other beams as well, a necessity when considering imperfec-
tions of the input which can cause elliptically polarized modes
in much smaller quantities.

The field in a corrugated waveguide can be split into two
parts, the field of the propagating modes which exists for
r < a and the field that exists in the corrugation grooves
where a < r < a + d. In the grooves, a standing wave pattern
forms which imposes a wall impedance on the boundary r = a
for the propagating wave which exists at r < a. Within the
corrugation, at r = a+d, Ez = 0 and Hφ is maximized. These
conditions lead to the wall impedance in the z direction as,

Zz =
Ez(r = a)
Hφ(r = a)

= Z0 tan(kd), (1)

where k is the wavenumber and Z0 is defined by the corru-
gation widths,

Z0 = −j
w1 − w2

w1

√
μ0

ε0
(2)

(see Figure 1 for parameter definitions) [5], [6]. For the case
considered here d = λ/4, so Zz = ∞, and Hφ(r = a) = 0.
This condition extends to the transverse electric field compo-
nents, such that Eφ(r = a) = 0 and Er(r = a) = 0.

To satisfy the linearly polarized field stipulation, the trans-
verse electric field for r < a is expressed in Cartesian
coordinates. Through coordinate definitions,

Ey = Er sin φ + Eφ cosφ. (3)

Ex = Er cosφ − Eφ sin φ. (4)

To polarize in the ŷ direction, Ex must be zero, which implies
that Er = f(r, φ, z) sinφ, and Eφ = f(r, φ, z) cosφ. These
forms satisfy the wave equations for cylindrical coordinates
and boundary conditions imposed by the corrugations, so long
as f(a, φ, z) = 0. Therefore, Ey = f(r, φ, z) and the boundary
condition that must be satisfied for linearly polarized modes is
Ey(r = a, φ, z) = 0. This extrapolation of Ey is similar to the
definition of LP modes for dielectric waveguides, as in [17].
One main difference between the two different waveguides is
the boundary conditions; whereas dielectric guides have finite
fields at the wall, the metallic guides considered here have
Ey = 0 at the wall of the guide.

Solving for the fields in the waveguide requires Ey to
satisfy the wave equation, as well. Though the electric field
is discussed in Cartesian coordinates to satisfy the linearly
polarized condition, it is more convenient to use cylindrical
variables to express the function, such that

∂2Ey

∂r2
+

1
r

∂Ey

∂r
+

1
r2

∂2Ey

∂φ2
+

∂2Ey

∂z2
+

ω2

c2
Ey = 0. (5)
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Assuming a z-dependence of e−jkzz and a φ-dependence of
cos(mφ) or sin(mφ) the wave equation is reduced to

r2 ∂2Ey

∂r2
+ r

∂Ey

∂r
+ ((krr)2 − m2)Ey = 0. (6)

which is the Bessel function differential equation, where kr =√
(ω2/c2−k2

z). The Bessel function of the first kind is chosen
to satisfy finite electric field conditions, such that

Ey(r, φ, z, t) = AJm(krr)ej(ωt−kzz)

{
cos(mφ)
sin(mφ)

}
, (7)

where A is a constant and either sinusoidal dependence on φ
is possible. The boundary condition Ey(a, φ, z) = 0 requires
that kr = Xmn/a, where Xmn is the nth zero of the mth

Bessel function. Through Maxwell’s equations, the dominate
field components for LPmn modes are

Ey,mn(r, φ) = AJm

(
Xmnr

a

) {
cos(mφ)
sin(mφ)

}
, (8)

Hx,mn(r, φ) =
−Akz

ωμ0
Jm

(
Xmnr

a

) {
cos(mφ)
sin(mφ)

}
,

(9)

where the functional dependence of E and H on z and t,
ej(ωt−kzz), has been dropped for simplicity. The longitudinal
components, Ez and Hz , and the transverse magnetic field in
the y-direction, Hy , are nonzero, but negligible by a factor of
λ/a. The transverse electric field in the x-direction is defined
due to the linear polarization condition as Ex = 0.

The odd and even LPmn modes are defined with a perpen-
dicular electric field as

�E⊥
mn(r, φ) = ŷAJm

(
Xmnr

a

) {
cos(mφ) (odd)
sin(mφ) (even).

(10)

To create an orthonormal basis set, a normalization factor
is calculated

Nmn =
∫ a

0

∫ 2π

0

(
E⊥

mn(r, φ)
)2

r dφdr. (11)

For LP0n (HE1n) modes, this normalization evaluates to

N0n = A2πa2J2
1 (X0n), (12)

and for all other LPmn modes, where m �= 0,

Nmn = A2 πa2

2
J2

m−1(Xmn). (13)

With this factor,

umn = E⊥
mn/

√
Nmn, (14)

such that umn is a simple way to express the normalized mode.
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Fig. 2. Field vector and magnitude plots for (a) LP01/HE11 and (b)
LP02/HE12. (Amplitudes are normalized.)
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Fig. 3. Field vector plots demonstrating the construction of LP modes
from TE, TM, and HE modes. The added modes have identical propagation
constants. (a) TM02 + HE21 rotated 45◦ = LP(e)

11 ; (b) −TE01 + HE21 =

LP(o)
11 ; (c) EH12 rotated −90◦ + HE31 rotated −90◦ = LP(e)

21 ; (d) EH12

rotated 180◦ + HE31 = LP(o)
21 .

III. RELATIONSHIP BETWEEN HYBRID AND LPmn MODES

Any wave propagating in the corrugated metallic waveguide
can be projected onto an orthonormal basis set of modes. Both
the hybrid modes and the LPmn modes form such a basis set.
Here, we indicate the relationships between these two basis
sets and show how the LPmn modes can be constructed from
the hybrid mode basis set.

Figure 2 illustrates the vector field and magnitude plots of
the electric field for two common LPmn modes. Note that
the HE1n modes are the same as the LP0n modes. Therefore,
the HE1n notation will be kept in order to agree with the
existing literature; this assignment is useful for discussing the
fundamental HE11 mode.

LPmn modes can be constructed through the addition
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of HEmn, EHmn, TE0n, or TM0n modes with the same
propagation constants (degenerate modes). Table I lists these
degenerate modes. Figure 3 illustrates, for a few LP modes,
how the addition of hybrid modes can form LPmn modes. The
first two examples, the LP11 modes, were previously described
in [9]. Through the field vector plots, Figure 3 demonstrates
this relationship between LP modes and HE, EH, TE, and
TM modes. For example, the LP(e)

11 mode can be constructed
by adding the TM02 mode and the HE21 mode, rotated by
45◦ as seen in Figure 3a. When adding these modes, the x̂-
components of the field cancel while the ŷ-components add,
resulting in a ŷ-directed linearly polarized field. All three of
these modes are characterized by the Bessel function zero
Xm =3.832 and, therefore, have the same beat wavelength
with the HE11 mode. Since both sets of modes are basis sets,
it is possible to use either set to describe a linearly polarized
beam in a waveguide. However, it is necessary to account
for HE, EH, TE, and TM modes that result in combinations
(like those listed above) to preserve linear polarization. Due to
this restriction, it is more convenient to consider the LP mode
basis set for analysis in corrugated cylindrical waveguides with
linearly polarized experimental inputs.

IV. GAP LOSS FOR PURE MODE INPUTS

Most waveguide transmission lines are dominated by long,
straight sections of waveguide which have negligible loss when
a/λ � 1 [5]. However, a practical waveguide system must
have waveguide gaps, bends, and switches in which the wave
propagates a distance without a confining wall. Losses in these
gaps often dominate the total loss of the line. In this section,
we calculate the power loss for an arbitrary LPmn mode due
to a gap in straight waveguide. The exercise computes the field
and mode amplitudes of a wave which radiates from the end
of a transmitting waveguide through a gap consisting of free
space and couples into a receiving waveguide after the gap.
When the length of the gap, L, is equivalent to the diameter
of the waveguide (that is L = 2a), the gap geometry is an
approximate 2-dimensional model of a 90◦ miter bend in the

Mode Xmn Degenerate modes
LP01 2.405 HE11

LP(o)
11 3.832 TE01, HE21

LP(e)
11 3.832 TM02, HE21

LP21 5.136 HE31, EH12

LP02 5.520 HE12

LP31 6.380 HE41, EH22

LP(o)
12 7.016 TE02, HE22

LP(e)
12 7.016 TM03, HE22

LP22 8.417 HE32, EH13

LP03 8.653 HE13

LP32 9.761 HE42, EH23

LP(o)
13 10.17 TE03, HE23

LP(e)
13 10.17 TM04, HE23

TABLE I
SELECT LP MODES WITH CORRESPONDING DEGENERATE MODES.

2a

(b)

L=2a

(a)

Fig. 4. (a) A radially symmetric gap with length L = 2a. (b) A miter
bend with a radius of a that can be modeled using equivalent gap theory, as
described in the text.

waveguide, as shown in Figure 4 [16]. Previously, the losses in
a gap have been calculated for single mode inputs consisting
of HE, TE, or TM modes [18] [19].

For LPmn modes, the electric field in a gap is derived using
the Fresnel Diffraction integral, an approach similar to [14],
such that

E⊥
g,mn(r, φ, z) =

jk

z
ej kr2

2z (15)∫∫
Ei(r′, φ′)ej k

2z [r′2−2rr′ cos(φ−φ′)]r dφ′dr′

where Ei(r, φ) defines the transverse electric field present at
the end of the waveguide before the gap. In the single mode
case, Ei(r, φ) = umn(r, φ). Also, z is defined as the distance
into the gap after the end of the waveguide. For an input
consisting of a single normalized LPmn odd mode, the electric
field in the gap is

�E⊥
g,mn(r, φ, z) = ŷ

j2πkA

z
√

Nmn

ejm π
2 ej kr2

2z cos (mφ) (16)∫ a

0

Jm

(
Xnr′

a

)
Jm

(
krr′

z

)
ej kr′2

2z r′dr′.

The integral with respect to φ has been solved using methods
discussed in [20], while the integral with respect to r ′ must
be solved numerically. Note that LPmn even modes result in
the same �E⊥

g,mn(r, φ, z) as (16) with cos (mφ) replaced by
sin (mφ).

Power loss in a specific mode occurs in the gap for two
reasons. First, as a result of diffraction, some of the power
exiting the transmitting waveguide lies outside of the receiving
waveguide at r > a and is lost, this is called truncation loss.
Second, there is power which enters the receiving waveguide
but couples to secondary modes instead of the original input
mode. For large a/λ, all of the modes produced in the
receiving waveguide will propagate down the waveguide, the
coupling to other modes results in additional power loss when
considering the original mode. This is called mode converstion
loss.

In the equivalent miter bend, shown in Fig. 4(b), the power
lost due to truncation is trapped inside of the bend. The power
is distributed into very high order modes of the waveguide
which do not propagate efficiently such that the power is
dissipated through ohmic heating in long waveguide systems.
The miter bend also suffers from mode conversion loss for the
same reasons as in a gap. If the miter bend contains extensions
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Fig. 5. The percent output of the power present in the LPmn modes after a
gap that results from a 100% LPm1 mode input, for m = 0 through m = 4.
LPm1 mode power outputs (which are over 94%) have been cropped to show
HOM content.

of the waveguide into the bend, the loss is reduced to one half
of that of the equivalent gap [16].

For a/λ large, the power in the output port will consist
primarily of power in the same mode (LPmn) as was incident
at the input port. Small amounts of power in other modes will
also be present at the output port. These small amounts are
illustrated for the case of LPm1 modes in Figure 5. Figure
5 shows the LPmn mode content in the receiving guide due
to a single LPm1 mode radiating from the transmitting guide
through a gap of length L = 2a and a system operating at
170 GHz with a = 31.75 mm. Results are shown for cases
with m = 0 through 4. In these cases, over 94% of the power
couples to the original input mode, less than 3% of the power
is lost, and the rest of the power couples to HOMs with the
same azimuthal, m, index, as shown in the figure.

A particular input mode will only result in output modes of
the same azimuthal symmetry. For example, the case of 100%
HE11 (LP01 in Figure 5) input results in 99.48% HE11 after the
gap and 0.26% power lost in the gap. The remaining power
goes into the HE1n HOMs, with the largest percentages in
HE16 (0.041%) and HE15 (0.039%), while HE12 is the seventh
largest mode with 0.007% of the total power. Also, consider an
input of 100% LP(o)

11 , which has an output of 98.68% LP(o)
11 ,

0.67% of power lost to the gap, and the remaining power
coupled into higher order LP(o)

1n modes. In each of these cases,
the input power is either lost in the gap or couples into modes
with the same azimuthal symmetry as the original input mode.

V. GAP LOSS FOR MULTIPLE MODE INPUTS

In the previous section, we considered a single mode at the
input port of the gap. In this section, we consider a multiple
mode input. In this case, we must consider both the amplitudes
of the modes and their phases. A multiple mode input follows
the same procedure as a single mode input. The gap loss is
calculated using (15), where the input electric field is now

defined as a summation of modes,

Ei(r, φ) =
∑
m

∑
n

√
Amnejθmnumn(r, φ), (17)

where Amn and θmn indicate the relative power and phase of
the input LPmn modes. The output can also be expressed as
a summation of each individual mode applied to Eq. (15) (as
was done in the Eq. (16) in the previous section),

�E⊥
g (r, φ, L) =

∑
m

∑
n

√
Amnejθmn �E⊥

g,mn(r, φ, L). (18)

The electric field in a gap for a multiple mode input is simply
the summation of the electric field in a gap due to each
individual mode input. After summing, the modal powers in
the waveguide after the gap are calculated in the same way as
the single mode case.

The phase difference between certain 2-mode input mode
combinations causes variations in the power loss and mode
content after the gap. The output HE11 power due to an input
consisting of the HE11 and HE12 modes has a significant
dependence on input phase, as shown in Figure 6(a) for gaps
when L = 2a. Considering an input mode content of 98%
HE11 and 2% HE12, the power lost in HE11 ranges from 0.28%
to 0.75% , corresponding to respective phase differences of
310◦ and 130◦. The average loss in HE11 is 0.52%, the same
value of loss as when HE11 is considered individually.

The dependence of power loss in a two mode system on the
phase difference between the modes is seen in any combination
of modes that has the same azimuthal (m) symmetry. For
example, an input consisting of HE11 and HE13 will also have
an output dependent on the phase between the two modes.
This effect is seen in Figure 6(b). Though, the average loss
in HE11 is still 0.52%, with a 2% HE13 content it may swing
from 0.15% to 0.88%, depending on the input phase. This
example treats modes of the same azimuthal symmetry (same
m value). At the output port, a mode couples only to modes
of the same azimuthal symmetry. Therefore, two modes of
different azimuthal symmetry (different m values) will not
interfere. For example, a two mode input consisting of an HE 11

(LP01) mode (m = 0) and LP(o)
11 mode (m = 1) produces an

output that has no dependence on the relative phase of the
modes and will always result in a 0.52% loss in the HE11

mode power.
A three or more mode input of the same azimuthal (m)

symmetry will also result in a phase dependence. For example,
an input consisting of HE11, HE12, and HE13, will result in an
output dependent on the phase relations between the modes.
Results for varying values of HOM percentage and phases are
shown in Figure 7, where the x-axis represents the total power
in the combination of the HE12 and HE13 modes. The HE11

power loss is dependent on the phases of both modes as well
as the percentage of power in each mode. A phase difference
between HE11 and HE12 of 310◦ and HE13 of 120◦ causes
the lowest possible power loss in HE11, while phases of 130◦

and 300◦ in HE12 and HE13, respectively, cause the largest
possible power loss. Figure 7 shows the curves corresponding
to these two extreme phase combinations. Both the absolute
highest and lowest loss in HE11 power occur when 30% of the
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Fig. 6. For a two mode input at 170 GHz with a = 31.75 mm and L = 2a,
the percent of (a) HE12 or (b) HE13 present in the input mode mixture vs.
the percent loss in HE11 after the gap is plotted. Different phases of HE12 or
HE13 have been chosen to show the full range of swing in the HE11 power
loss. The average HE11 power loss is 0.52% for both cases.

HOM content is in HE12, and 70% is in HE13. In this case,
a 2% HOM content may cause a swing in lost HE11 output
power from 0.08% to 0.95% a swing that is larger than the
result from 2% in HE12 or HE13 individually.

VI. CONSTANT OF THE MOTION FOR TILT AND OFFSET

At the termination of a transmission line, the fields may be
radiated from the end of the guide to an antenna or directly into
space. If a single mode is propagating on the line, the mode
will reach the end of the line such that the fields are centered
on the waveguide. The radiation pattern at the end of the
guide can be calculated in the near and far fields. For a single
mode, the direction of propagation will always be centered
on and parallel to the waveguide axis. When two or more
modes propagate down the transmission line, it is no longer
true that the mode is, in general, centered on the waveguide
axis. The fields will radiate from the end of the waveguide, but

0 1 2 3 4 5 6 7 8−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

% HE 12 and HE13 at input

%
 H

E 1
1 P

ow
er

 L
os

t

 

 

0% HOM in HE12
30%
90%
100%

Fig. 7. The power loss in a gap for HE11 vs. HOM content for a three mode
input. The HOM content is split between HE12 and HE13, and the largest
and smallest HE11 power loss (due to HOM phase) is plotted for each mode
split. The system is at 170 GHz with a = 31.75 mm.
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z

Fig. 8. A wave radiating from the end of a waveguide at z1 has a centroid
of power with an offset, x0(z1), and a tilt angle of propagation, αx(z1), as
defined here.

the propagation angle will no longer, in general, be parallel
to the waveguide axis. In this section, we derive a simple
new result for the propagation of two modes that shows a
relationship between the tilt and offset at the terminus of a
corrugated waveguide transmission line.

The problem is illustrated in Figure 8, where the waveguide
ends at a particular location of the z-axis, z1. When a wave
propagates outside of a waveguide, the centroid of power has a
particular tilt angle, αx,y(z), and offset, x0(z) and y0(z), from
the center, as illustrated in Figure 8. These two propagation
parameters (tilt angle and offset) define the wave after the
waveguide and quantify the centroid of power.

The offset and tilt angle of propagation are controlled by
the mode content of the wave in the waveguide. A two-
mode content is characterized by two parameters, the relative
amplitude and phase difference between the modes. For a pure
mode leaving a waveguide, the centroid of the mode power is
always on axis (x0, y0 = 0) and the mode has a constant flat
phase front (αx,y = 0). However, when two modes propagate,
the power centroid will generally be off-center from the axis
and the phase front will be tilted by an angle.

A conservation theorem expressing the relationship between
tilt and offset for two propagating LPmn modes is derived. For
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two modes, the electric field is defined as

E(x, y, z) = C1(z)um1n1(x, y) + C2(z)um2n2(x, y). (19)

Here, Cp (where p = 1, 2 indicates the first or second mode
of the system) is a complex variable indicating the amplitude
and phase of the modes as

Cp(z) =
√

Ape
j(kz,pz1+θp). (20)

For the pth mode, Ap is the percentage of power in the mode,
kz,p is the wavenumber in the ẑ-direction, and θp is the phase
of the mode at z1 = 0. Also, umpnp(x, y) is the normalized
field pattern of each mode as indicated in Eq. (14), with
appropriate substitutions for r and φ to convert to the Cartesian
coordinate system. The offset and propagation angle in the x̂-
direction are defined as

x0(z1) = 〈x(z1)〉 =
∫∫

E∗(x, y, z1)xE(z, y, z1)dxdy,

(21)

αx(z1) =
〈kx(z1)〉

k
=

−j

k

∫∫
E∗(x, y, z1)

∂E(x, y, z1)
∂x

dxdy.

(22)
With the electric field defined for this problem, offset can be
expressed as

x0(z1) =
∫∫

xC1C
∗
2um1n1u

∗
m2n2

dxdy +∫∫
xC∗

1C2u
∗
m1n1

um2n2dxdy,

(23)

and reduced to

x0(z1) = 2Re (C1C
∗
2 ) b12. (24)

The propagation angle can also be expressed as

αx(z1) =
j

k

(∫∫
C1C

∗
2um2n2

∂um1n1

∂x
dxdy −∫∫

C∗
1C2um1n1

∂um2n2

∂x
dxdy

)
,

(25)

and reduced to

αx(z1) = 2Im (C1C
∗
2 ) d12. (26)

The variables b12 and d12 are mode-specific integrals where

b12 =
∫∫

xum1n1um2n2dxdy (27)

and
d12 =

−1
k

∫∫
um2n2

∂um1n1

∂x
dxdy. (28)

The offset and angle in the ŷ-direction is similarly found with
x → y and y → x. Note that an angle and offset only occur
for modes where m2 = m1 ± 1; in all other cases, b12 and
d12 evaluate to zero.

Due to the dependence on real and imaginary parts of the
complex magnitudes, it is seen that the offset and angle change
with the beating, or phase difference, between modes as the
fields propagate. It is useful to define the offset and tilt as
sinusoidal functions dependent on z1 by using Euler’s identity
such that,

x0(z1) = xmax cos((Δk)z1 + θ0) (29)
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Fig. 9. Maximum (a) offset and (b) tilt angle vs. HE11 percent content (Ap

in Eq. (20)) for a combination of HE11 and LP11 modes.

αx(z1) = −αmax sin((Δk)z1 + θ0) (30)

In this case, (Δk)z1 indicates the phase difference between
the modes and θ0 is the phase difference at z = 0 between
the modes. The maximum possible offset and angle for a
combination of two modes are defined as

xmax = 2b12 |C1C
∗
2 | (31)

and
αmax = 2d12 |C1C

∗
2 | . (32)

In addition, it can be inferred that xmax and αmax occur when
C1C

∗
2 is either purely real or purely imaginary, respectively.

Eqs. (29) and (30), together with Eqs. (31) and (32) can
be combined to form an expression for tilt and offset that is
independent of location (z1) on the transmission line. That is,
the expression for tilt and offset may be combined to form a
constant of the motion:(

x0(z1)
b12

)2

+
(

αx(z1)
d12

)2

= 4 |C1C
∗
2 |2 . (33)

The two governing parameters of the system are the percent
split and phase difference between the two modes.

To illustrate this constant of the motion, we consider the
common two mode combination of HE11 and LP(e)

11 modes. In
this case, b12 and d12 are evaluated as

b12 =
√

2
a2J1(X0)J0(X1)

∫ a

0

J0

(
X0r

a

)
J1

(
X1r

a

)
r2dr,

(34)

d12 =
λX0X1√

2πa (X2
1 − X2

0 )
, (35)

where X0 = 2.405 and X1 = 3.832, this gives b12 = 0.329a
and d12 = 0.233λ/a. For a = 31.75 cm and λ = 1.76 mm
(170 GHz), these evaluate to d12 = 0.74◦ and b12 = 1.045
cm. Figure 9 shows the maximum angle and offset for an
input of these two modes as defined in Eq. (31) and (32)
versus the percent split between the two modes, the only
variable parameter which will change the maximum angle and
offset. Figures 10 and 11 show the angle and offset due to an
input with 80% HE11 and 20% LP11 or 90% HE11 and 10%
LP11, respectively, versus the phase difference between the
modes, the second variable parameter. For these two modes,
a phase difference of 2π corresponds to z1 = 5.07 m.
Due to interference effects, the power in the two modes
propagates in the waveguide with sinusoidal oscillations in
both tilt and offset, dependent on phase. By relation to the
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Fig. 10. The centroid offset and tilt angle for an input of 80% HE11 and
20% LP(e)

11 in a waveguide of radius a = 31.75 mm at 170 GHz. f(αx, x0)
plots Eq. 36. A 2π phase difference corresponds to z1 = 5.07 m.

beat frequency between the two modes, the phase dependence
can be quantified as the location in the waveguide where it is
terminated and the wave is allowed to radiate into free space,
θ = (Δk)z1 + θ0. Figure 10 has a larger split between the
mode contents than Figure 11, causing a larger amplitude of
offset and angle oscillations. In both figures, the oscillations
are out of phase by 90◦ and combine (using (33)) to form a
constant of the motion. In both figures we calculate f(αx, x0),
where

f(αx, x0) =
1

4 |C1C∗
2 |2

[(
x0(z1)

b12

)2

+
(

αx(z1)
d12

)2
]

. (36)

and show that it is unity for all phases. Other percent splits
between HE11 and LP11 will behave in the same pattern.
In addition, other two-mode combinations that result in a
centroid offset will behave similarly, i.e. modes that vary by
one azimuthal index will follow the same pattern as the HE11

and LP11 combination illustrated here.

VII. DISCUSSION AND CONCLUSIONS

We have shown that the LPmn modes form a convenient
basis set for linearly polarized waves that are transmitted in
large diameter, corrugated metallic waveguides with quarter-
wave corrugations. The LPmn modes may also be used to
quantify the effects of HOMs in over-moded transmission
lines. Applying this basis set to calculate the loss due to a gap
in the waveguide for a pure mode input provides an assessment
of the HOMs of the same azimuthal symmetry generated in a
gap. An LPmn mode at the input port of a gap generates HOMs
at the output port with the same azimuthal symmetry (same m
value). With a multiple mode input, the azimuthal symmetry of
the problem reduces the complexity of analysis. For example,
when considering the loss in a gap due to two modes, inputs
which consist of HE11 and a higher order HE1n mode will
generate a phase dependence on HE11 loss. However, input
with HE11 and LPmn modes with m > 0 have a loss that is not
dependent on phase. The phase between HE1n modes causes a
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Fig. 11. The centroid offset and tilt angle for an input of 90% HE11 and
10% LP(e)

11 in a waveguide of radius a = 31.75 mm at 170 GHz. f(αx, x0)
plots Eq. 36. A 2π phase difference corresponds to z1 = 5.07 m.

swing in the HE11 power loss which increases with increasing
HOM content, but the average loss in HE11 mode power over
input HOM phases is not dependent on the amplitude of the
HOM mode content.

The constant of motion for tilt and offset of a wave exiting
a waveguide is useful in quantifying the effect of HOMs
on transmission lines. This constant of motion relates the
tilt and offset due to a particular two mode combination in
the waveguide. For an angle and offset to occur, the two
modes must be related such that the azimuthal indices vary
by one, m2 = m1 ± 1. The phase difference between modes
modifies the split between centroid offset and propagation
angle, but does not affect the constant of motion between the
two parameters.
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