19 research outputs found

    Article hydrogen separation performance of UiO-66-NH2_{2} membranes grown via liquid-phase epitaxy layer-by-layer deposition and one-pot synthesis

    Get PDF
    The quality assurance of hydrogen fuel for mobile applications is assessed by the guidelines and directives given in the European and international standards. However, the presence of impurities in the hydrogen fuel, in particular nitrogen, water, and oxygen, is experienced in several refueling stations. Within this work, metal-organic framework (MOF)-based membranes are investigated as a fine-purification stage of the hydrogen fuel. Three H2_{2}2/N2_{2} concentrations have been used to analyze the separation factor of UiO-66-NH2_{2} membranes prepared using the layer-by-layer (LBL) and the one-pot (OP) synthesis methods. It is shown that the separation factor for an equimolar ratio is 14.4% higher for the LBL sample compared to the OP membrane, suggesting a higher orientation and continuity of the LBL surface-supported metal-organic framework (SURMOF). Using an equimolar ratio of H2_{2}/N2_{2}, it is shown that selective separation of hydrogen over nitrogen occurs with a separation factor of 3.02 and 2.64 for the SURMOF and MOF membrane, respectively. To the best of our knowledge, this is the highest reported performance for a single-phase UiO-66-NH2_{2} membrane. For higher hydrogen concentrations, the separation factor decreases due to reduced interactions between pore walls and N2_{2} molecules

    Effect of Triple Treatment on the Surface Structure and Hardness of 304 Austenitic Stainless Steel

    Get PDF
    Nitriding, annealing, and carbonitriding processes are conducted to modify the surface of AISI 304 austenitic stainless steel via radio frequency plasma. A ~20 μm thick nitride layer is obtained in ten minutes at a plasma power of 450 W. Hence, all nitrided samples are annealed under vacuum for one hour at 400 ̊C. The nitrided-annealed samples are carbonitrided via the identical technique at various C2H2/N2 gas pressure ratios. Numerous analytical techniques, including X-ray diffractometry, glow discharge optical spectroscopy (GDOS), Talysurf Intra Profilemeter, optical microscopy (OM), scanning electron microscopy (SEM), and Vickers microhardness tester, were employed to investigate the triple-treated specimens. Microstructure analysis of the triple-treated samples reveals the formation of N2 expanded austenite phase (γN), γʹ-Fe4N, CrN, Fe3C, and Fe7C3. The results indicate that the elemental composition, microhardness, and thickness of the triple-treated layers are all depending on the gas composition. After carbonitriding, the total thickness of the compound layer grew from ~20 to ~34.5 μm. The surface microhardness of the triple-treated samples increased as the C2H2/N2 gas composition ratio increased up to 70%, reaching 1,497±33.5 HV0.1, which is ~6.8 and ~1.42 folds higher than the untreated and prenitrided samples, respectively

    Efficient Fluoride Removal from Aqueous Solution Using Zirconium-Based Composite Nanofiber Membranes

    Get PDF
    Herein, composite nanofiber membranes (CNMs) derived from UiO-66 and UiO-66-NH2 Zr-metal-organic frameworks (MOFs) were successfully prepared, and they exhibited high performance in adsorptive fluoride removal from aqueous media. The resultant CNMs were confirmed using different techniques, such as X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and Brunauer–Emmett–Teller (BET) in addition to Fourier-transform infrared spectroscopy (FTIR). The parameters that govern the fluoride adsorption were evaluated, including adsorbent dose, contact time, and pH value, in addition to initial concentration. The crystalline structures of CNMs exhibited high hydrothermal stability and remained intact after fluoride adsorption. It could also be observed that the adsorbent dose has a significant effect on fluoride removal at high alkaline values. The results show that UiO-66-NH2 CNM exhibited high fluoride removal due to electrostatic interactions that strongly existed between F− and metal sites in MOF in addition to hydrogen bonds formed with MOF amino groups. The fluoride removal efficiency reached 95% under optimal conditions of 20 mg L−1, pH of 8, and 40% adsorbent dose at 60 min. The results revealed that UiO-66-NH2 CNM possesses a high maximum adsorption capacity (95 mg L−1) over UiO-66 CNM (75 mg L−1), which exhibited better fitting with the pseudo-second-order model. Moreover, when the initial fluoride concentration increased from 20 to 100 mg/L, fluoride adsorption decreased by 57% (UiO-66 CNM) and 30% (UiO-66-NH2 CNM) after 60 min. After three cycles, CNM revealed the regeneration ability, demonstrating that UiO-66-NH2 CNMs are auspicious adsorbents for fluoride from an aqueous medium

    Rapid photocatalytic degradation of phenol from water using composite nanofibers under UV

    Get PDF
    Background The removal of phenol from aqueous solution via photocatalytic degradation has been recognized as an environmentally friendly technique for generating clean water. The composite nanofibers containing PAN polymer, CNT, and TiO2_{2} NPs were successfully prepared via electrospinning method. The prepared photocatalyst is characterized by SEM, XRD, and Raman spectroscopy. Different parameters are studied such as catalyst amount, the effect of pH, phenol concentration, photodegradation mechanism, flow rate, and stability of the composite nanofiber to evaluate the highest efficiency of the photocatalyst. Results The composite nanofibers showed the highest photodegradation performance for the removal of phenol using UV light within 7 min. The pH has a major effect on the photodegradation of phenol with its maximum performance being at pH 5. Conclusions Given the stability and flexibility of the composite nanofibers, their use in a dynamic filtration is possible and can be even reused after several cycles

    Stability of monolithic mof thin films in acidic and alkaline aqueous media

    Get PDF
    In the context of thin film nanotechnologies, metal-organic frameworks (MOFs) are currently intensively explored in the context of both, novel applications and as alternatives to existing materials. When it comes to applications under relatively harsh conditions, in several cases it has been noticed that the stability of MOF thin films deviates from the corresponding standard, powdery form of MOFs. Here, we subjected SURMOFs, surface-anchored MOF thin films, fabricated using layer-by layer methods, to a thorough characterization after exposure to different harsh aqueous environments. The stability of three prototypal SURMOFs, HKUST-1, ZIF-8, and UiO-66-NH2 was systematically investigated in acidic, neutral, and basic environments using X-ray diffraction and electron microscopy. While HKUST-1 films were rather unstable in aqueous media, ZIF-8 SURMOFs were preserved in alkaline environments when exposed for short periods of time, but in apparent contrast to results reported in the literature for the corresponding bulk powders- not stable in neutral and acidic environments. UiO-66-NH2_{2} SURMOFs were found to be stable over a large window of pH values

    Shape stabilization and laser triggered shape transformation of magnetic particle functionalized liquid metal motors

    Get PDF
    Liquid metal motors made from biologically benign gallium are promising candidates for various applications ranging from drug delivery to targeting and killing cancer cells directly. One of the main problems with this novel technology is the need to utilize a membrane, making it possible to maintain a defined shape in order to perform the required functions. For magnetic remote guidance, liquid metal motors can be doped with magnetic iron microparticles, forming a transition magnetic liquid. In an alternative approach liquid metal structures are coated with magnetite nanoparticles. We hereby present an approach to laminate biologically benign gallium-based magnetic liquid metal motors with a biodegradable and biocompatible macromolecular thin film to retain the initial shape. Thanks to the polymer lamination and by the help of magnetic fields, the presented liquid metal motors can be remotely guided. The shape retaining macromolecular thin film can be liquefied by photothermal effects such as laser irradiation in order to change the shape of the liquid metal motor into a droplet due to surface energy minimization, allowing for penetration of structures smaller than the initial motor size. This work uses a relatively large technical demonstrator to show the technical realization and properties of this novel system, which opens up new paths and potential applications

    Metal-Organic Framework MIL-68(In)-NH2_{2} on the Membrane Test Bench for Dye Removal and Carbon Capture

    Get PDF
    The metal-organic framework (MOF) MIL-68(In)-NH2_{2} was tested for dye removal from wastewater and carbon capture gas separation. MIL-68(In)-NH2_{2} was synthesized as a neat, supported MOF thin film membrane and as spherical particles using pyridine as a modulator to shape the morphology. The neat MIL-68(In)-NH2_{2} membranes were employed for dye removal in cross-flow geometry, demonstrating strong molecular sieving. MIL-68(In)-NH2_{2} particles were used for electrospinning of poylethersulfone mixed-matrix membranes, applied in dead-end filtration with unprecedented adsorption values. Additionally, the neat MOF membranes were used for H2_{2}/CO2_{2} and CO2_{2}/CH4_{4} separation

    Synthesis, Transfer, and Gas Separation Characteristics of MOF-Templated Polymer Membranes

    Get PDF
    This paper discusses the potential of polymer networks, templated by crystalline metal–organic framework (MOF), as novel selective layer material in thin film composite membranes. The ability to create mechanically stable membranes with an ultra-thin selective layer of advanced polymer materials is highly desirable in membrane technology. Here, we describe a novel polymeric membrane, which is synthesized via the conversion of a surface anchored metal–organic framework (SURMOF) into a surface anchored gel (SURGEL). The SURGEL membranes combine the high variability in the building blocks and the possibility to control the network topology and membrane thickness of the SURMOF synthesis with high mechanical and chemical stability of polymers. Next to the material design, the transfer of membranes to suitable supports is also usually a challenging task, due to the fragile nature of the ultra-thin films. To overcome this issue, we utilized a porous support on top of the membrane, which is mechanically stable enough to allow for the easy membrane transfer from the synthesis substrate to the final membrane support. To demonstrate the potential for gas separation of the synthesized SURGEL membranes, as well as the suitability of the transfer method, we determined the permeance for eight gases with different kinetic diameters

    MOF‐Hosted Enzymes for Continuous Flow Catalysis in Aqueous and Organic Solvents

    Get PDF
    Fully exploiting the potential of enzymes in cell-free biocatalysis requires stabilization of the catalytically active proteins and their integration into efficient reactor systems. Although in recent years initial steps towards the immobilization of such biomolecules in metal-organic frameworks (MOFs) have been taken, these demonstrations have been limited to batch experiments and to aqueous conditions. Here we demonstrate a MOF-based continuous flow enzyme reactor system, with high productivity and stability, which is also suitable for organic solvents. Under aqueous conditions, the stability of the enzyme was increased 30-fold, and the space-time yield exceeded that obtained with other enzyme immobilization strategies by an order of magnitude. Importantly, the infiltration of the proteins into the MOF did not require additional functionalization, thus allowing for time- and cost-efficient fabrication of the biocatalysts using label-free enzymes

    Efficient Fluoride Removal from Aqueous Solution Using Zirconium-Based Composite Nanofiber Membranes

    No full text
    Herein, composite nanofiber membranes (CNMs) derived from UiO-66 and UiO-66-NH2 Zr-metal-organic frameworks (MOFs) were successfully prepared, and they exhibited high performance in adsorptive fluoride removal from aqueous media. The resultant CNMs were confirmed using different techniques, such as X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and Brunauer–Emmett–Teller (BET) in addition to Fourier-transform infrared spectroscopy (FTIR). The parameters that govern the fluoride adsorption were evaluated, including adsorbent dose, contact time, and pH value, in addition to initial concentration. The crystalline structures of CNMs exhibited high hydrothermal stability and remained intact after fluoride adsorption. It could also be observed that the adsorbent dose has a significant effect on fluoride removal at high alkaline values. The results show that UiO-66-NH2 CNM exhibited high fluoride removal due to electrostatic interactions that strongly existed between F− and metal sites in MOF in addition to hydrogen bonds formed with MOF amino groups. The fluoride removal efficiency reached 95% under optimal conditions of 20 mg L−1, pH of 8, and 40% adsorbent dose at 60 min. The results revealed that UiO-66-NH2 CNM possesses a high maximum adsorption capacity (95 mg L−1) over UiO-66 CNM (75 mg L−1), which exhibited better fitting with the pseudo-second-order model. Moreover, when the initial fluoride concentration increased from 20 to 100 mg/L, fluoride adsorption decreased by 57% (UiO-66 CNM) and 30% (UiO-66-NH2 CNM) after 60 min. After three cycles, CNM revealed the regeneration ability, demonstrating that UiO-66-NH2 CNMs are auspicious adsorbents for fluoride from an aqueous medium
    corecore